
ρs-calculus
a language for stateful graph rewriting

Otto Jung <rose1@vau.place>

Abstract
We present a new programming language based on rewriting seman-

tics. The language is homoiconic and stateful, and its rewrite rules are
expressive enough to interpret the language itself. First we formally spec-
ify the semantics of ρs, and then we study some of its properties. By
adopting a well-known notion of expressiveness, we show that most local
features are expressible in the language.

Acknowledgements
Thank you to my supervisor for your invaluable insights, guidance and humor.
We have spent countless hours in discussions around this thesis, and I have
learned a lot from you in the process.

I am extremely lucky to have been a student of my teachers. The knowledge
and skills that I acquired from them were essential in writing this work.

And I also want to thank my sister that always supports me, and my father,
for the aspiration that he gave me for studying.

Contents
Motivation 4

Context 4
Term rewriting . 4
Term graph rewriting . 5
Programming by rewriting . 5

Preliminaries 8
Notation and definitions . 8
Syntax for graphs . 10

ρs calculus 13
Static language . 13
Dynamic language . 22
Properties . 30

Graph calculi 33
Modularity . 35
Equality . 36
Expressiveness . 37

Expressiveness of ρs 38
Library features . 38
Computable library features . 41

Conclusions and future work 55

Appendix 55

Motivation
The primary goal of this work is an attempt to utilize graph rewriting for general
programming. To this end, we have designed a programming language based on
dynamic graph rewriting rules, supporting direct manipulation of local state.
These features are a natural extension of existing work, and they allow to con-
veniently express many programming concepts, without big losses to evaluation
efficiency. Furthermore, thanks to these features, the semantics of the language
can remain simple (relative to its goals).

The typical applications that we have in mind for this language are program
transformation software and different types of calculators.

Context
Basing a language on rewriting semantics is a very old idea, and the theory of
rewriting is very rich and reasonably well understood. In the following subsec-
tions we give a brief overview of both theory and practice, and show that it is
not our goal that is original, but our approach.

Term rewriting
Our starting point is term rewriting systems [1]. These systems operate on
“directed equations” called “rewrite rules”, that are used to replace equivalent,
in some sense, expressions, but only in the specified direction. By taking sev-
eral rewrite rules and repeatedly applying the replacements, any computational
process can be modeled.

As an example, take this addition algorithm expressed in terms of rewrite
rules:

add(x, 0) → x
add(x, s(y)) → s(add(x, y))

Indeed, if natural numbers are encoded as {0, s(0), s(s(0)), ...}, then any ex-
pression of the form add(x, y) eventually evaluates to the sum of x and y.

Central themes in term rewriting are:

• Termination – conditions under which the process of replacements termi-
nates.

• Confluence – a phenomenon of different sequences of replacements result-
ing in the same expression.

• Completion – a method of constructing confluent systems.

• Conditional rewriting – an extension to rewrite process that allows a re-
striction on application of rules based on arbitrary predicates accompany-
ing them.

4

• Theorem proving – a study in application of term rewriting to verification
of logical formulas.

A broad overview of existing research is presented in [2]. For a more in-depth
understanding, there is the classic book “Rewriting and all that” [3].

Term graph rewriting
The expressions, being the object of term rewriting, are actually trees1. It did
not take long to generalize rewriting to graphs1, which resulted in term graph
rewriting [5].

The first use of graph rewriting was due to Wadsworth [6], with a goal to
propose a more efficient implementation for languages based on lambda calcu-
lus. It was later proven that term graph systems are a superset of “regular”
term rewriting systems, not of general term rewriting systems [7]. However, the
inequality result relies on a rather technical difference between the two systems,
and conceptually one can easily consider them a true generalization, especially
in the context of programming. Furthermore, it is a standard technique to use
graph rewriting for implementation of term rewriting languages [8], because of
the efficiency that comes from the fact that identical subterms can be shared.

As mentioned, the main difference between term rewriting and term graph
rewriting is the type of data structure that is being rewritten. Thus, many re-
search topics overlap, but some developments are unique to graphs. Interaction
nets [9] are one such example.

For a survey on term graph rewriting, see [10].

Programming by rewriting
Some of the earliest studies in term rewriting [11, 12, 13, 14] develop a method
for automatic transformation of sets of equations into efficient programs that
implement their logical meaning, and describe the usefulness of programming
with such equations. We already saw how rules of addition can be translated
into rewrite rules, now let us see an example in list processing, where we may
have the following axioms:

car(cons(x, y)) = x
cdr(cons(x, y)) = y

These directly translate to the appropriate rewrite rules by simply replacing
the equal sign, so that the bigger expression reduces to the smaller one.

Likewise, here is a definition of “append”:

append(nil, z) = z
append(cons(x, y), z) = cons(x, append(y, z))

To concatenate a list x with a list y, we rewrite expression append(x, y) until
it reaches its normal form, i.e., one which cannot be rewritten further.

1That are rooted, directed, labelled and ordered [4].

5

It is now known that any equational program (like those in logic program-
ming) can similarly be expressed as a rewriting system [11].

Following the initial success, there were many further attempts to connect
programming concepts with term rewriting. For example, a connection between
Aspect Oriented Programming [15] and term rewriting is explored in [16], and
the work [17] attempts to bring an exception mechanism [18] into a term rewrit-
ing language.

On the practical side, one of the first languages based on term rewriting
was “Macsyma” [19], which made term rewriting the standard for implementing
computer algebra systems [20], and gave rise to the well known “Maxima” [21],
“Mathematica” [22], and “Maple” [23] systems that are developed to this day.
Solving polynomial equations is a task perfectly suited to be programmed in
terms of rewriting, and a typical use case for computer algebra systems.

Other application domains include automated theorem proving, universal
algebra, parallel processing, transition systems, expert systems, and functional
programming. More specifically, rewriting is used in re-engeneering of Cobol
programs [24] and program transformations in general [25], as well as in se-
mantics, where it gives meaning to programming languages [26], in constraint
solving, where it underlies the solvers [27], and in everyday tasks, to normalize
email addresses of /etc/sendmail.cf into canonical forms.

Concurrent Clean [28] deserves a special mention here. Even though the rules
of Clean are limited to those expressible by function definitions from functional
languages, its semantics is implemented in terms of term graph rewriting. Clean
allows users to control its parallel order of evaluation, making efficient evaluation
possible.

On the implementation side, we can divide existing work into two groups
of languages, depending on their handling of the problem of confluence. The
problem is that in the paradigm of functional programming, the only acceptable
evaluation process is a confluent one – every expression must have at most one
“value”. In practice, when dealing with rewrite rules, there are two main ways
to achieve this behaviour.

The first is to limit the expressive power of available rule choices, often by
permitting only some specified types of patterns. For example, it is known that
orthogonal [29] term rewrite systems are confluent. This notion of orthogonality
may then be translated to the rewrite system of interest, and applied to the same
effect.

The second way is to present an ability to specify a reduction strategy [30],
that may, or may not, limit the resulting values, depending on whether every
strategy can be encoded. Some term rewriting languages that focus on reduc-
tion strategies are “Stratego” [31], “PORGY” [32, 33], and “ELAN” [34]. But
many others employ reduction strategies, among which are “Maude” [35], and
“Tom” [36], “AGG” [37], “PROGRES” [38], “Fujaba” [39], “GrGen” [40], and
“GP” [41].

6

To illustrate how strategies work, we briefly describe them in case of Strat-
ego. Assume we have regular term rewrite rules s11 and s2. Possibly, we want to
apply them in sequence – first s1, then s2. For this, there is a built-in operator
of sequential composition. After the two rules have been combined, they remain
being a rule of the Stratego system, so further combinations are possible.

By default, rules in Stratego only apply to the root of the expression. If we
would want to apply a rule to every subexpression at once, there is a builtin
operator for that too. Finally, we can control how many times a rule is applied –
maybe just one time, or however many times until it fails – by applying another
builtin operator.

We chose the second way for our language, but instead of providing builtin
evaluation strategies and combinators for them, we gave the rewrite rules enough
power to express arbitrary evaluation strategy.

Dynamic rewriting, also called “higher order rewriting”2, is when rules can
manipulate rules – create them during rewrite process, or in some way modify
the existing ones. In other words, dynamic rewriting is when rewrite rules are
first-class objects [43] in the language.

Languages such as “ρ-calculus” [44], “ρg-calculus” [45], and the newer version
of “Stratego” [25] are in the group focused on dynamic rewriting.

Take ρ-calculus as an example. A rewrite rule in this language is similar
to abstraction in lambda calculus [46]. Given the term T = 2 + 0, and the
rewrite rule R = x+0 → x, application of the rule to the term can be explicitly
represented as A = [x+0 → x](2+0). The result of the application is U = {2}.
All of the objects mentioned here (T , R, A and U), are first-class in ρ-calculus.
In particular, the rule constructor operator “→” is a regular symbol, like “0” or
“+”. In general, terms are generated by the following grammar [47]:

t ::= x | f(t, ..., t) | {t, ..., t} | t | t→ t

We decided to also support dynamic rewriting in our language, similarly to
how ρ-calculus does it.

Finally, let us discuss the “conditional” part of conditional rewriting. Lan-
guages such as “Pure” [48], “Concurrent Clean” [28], and “Stratego” [31] allow
conditions to be based on equality of normal forms. In other words, in these
languages one can restrict a rewrite rule to be applicable only when two chosen
terms evaluate to the same term.

Another approach is taken by “PTTR” [49] and “PρLog” [50], among other
relational languages. These languages allow first-order logical formulas to be
associated with a rewrite rule, serving as a condition for applicability of the
rule. In particular, this ensures that every rewrite rule is decidable, which is
not the case with the first approach.

We adopt an entirely different way of conditional rewriting, which is related
to how we handle state. It is however easy to show that conditions based on

2But this term is overloaded, ex. in [42] it stands for a different thing.

7

formulas (as in the second approach above) can be expressed using our method,
but only for those formulas that yield finite relations.

We do not know whether there exist languages that support direct handling
of state, similar to how we do it.

Preliminaries
Our definitions are fairly standard, but the notation is not. It is also not required
to be familiar with the notation to understand the remaining parts.

Notation and definitions
Our main data structure is the ordered graph defined as follows:

Graph

Given an infinite set U,

• a vertex is an element of U,

• a graph is a partial function of type U ⇀ U∗.

In the remaining parts we assume that the set U is fixed. Even though we
will usually consider finite graphs, the set of vertices U is required to be infinite
in order to support creation of fresh nodes during evaluation, since rewriting
can generate those.

For the ease of readability, most of our variables have an associated type:

• n, i, k are numbers

• f , ψ are functions

• R, P , Q are relations

• g, h are graphs

• a, b, c, d, e are vertices

A graph is a function that associates vertices to lists of vertices. A list, or
n-tuple, is written as 〈x1, ..., xn〉. We adopt some set notation for lists:

• If x is a list then y ∈ x is true iff x = 〈z1, ..., y, ..., zn〉

• If x and y are lists, then notation x ∪ y stands for list concatenation, i.e.
〈x1, x2, ...〉 ∪ 〈y1, y2, ...〉 = 〈x1, x2, ..., y1, y2, ...〉

8

Basic graph terminology follows. Vertex a is said to be a child of b in g
when a ∈ g(b). If either a ∈ g(b) or b ∈ g(a), then a and b are adjacent.
A sequence of vertices a1, a2, ..., an is called a path from a1 to an if for each
i ∈ {1, 2, ..., n− 1} it is true that ai+1 ∈ g(ai). If there is a path from a1 to an,
then an is said to be reachable from a1, written as E∗

g(a1, an).
We say that g is an open graph if there are vertices a, b such that b ∈ g(a)

and b 6∈ dom(g). If graph is not open, then it is closed. Unless stated otherwise,
all our graphs are closed by default.

The set of all graphs is G and ∅ is the empty graph (which is also the empty
set).

We write a ∈ g to mean that there exist edges to or from a in the graph g,
i.e.

a ∈ g ⇐⇒ ∃
b

a ∈ g(b) ∨ b ∈ g(a)

Also, if g is a graph, then a(b1, ..., bn) ∈ g is the same as g(a) = 〈b1, ..., bn〉.
Vertices, edges, and roots of a graph are its basic parts, for access to which

we use these functions:

• V(g) is the set of all vertices of g, i.e.
V(g) = {a : a ∈ g}

• E(g) is the set of all edges of g, i.e.
E(g) = {〈a, b〉 : b ∈ g(a)}

• R(g) is the set of roots of g, i.e.
R(g) = {a : a ∈ g ∧@

b

a ∈ g(b)}

• R(g)i is g(a)i if {a} = R(g) and ⊥ otherwise

• R(g)1... is g(a) if {a} = R(g) and ⊥ otherwise

Graph h is a subgraph of graph g, written h ≤ g, if h has some of the
vertices of g, and some of the edges connecting those vertices in g. Written
formally:

h ≤ g ⇐⇒ V(h) ⊆ V(g)
∧ ∀

a∈V(h)

h(a) = g(a) ∨ h(a) = 〈〉

One way to get a subgraph of g is to pick a vertex and all of the vertices and
edges that are reachable from it. We say that the resulting graph is a closure
of g, and use notation g(a)∗ for it, with precise meaning being:

g(a)∗ = h ⇐⇒ h ⊆ g ∧∀
b

(h(b) = g(b) ⇐⇒ E∗
g(a, b))

A cycle is a path of positive length from any vertex to itself. If a graph
contains cycle as a subgraph, then it is a cyclic graph, otherwise it is an
acyclic graph.

9

Finally, to talk about modification of graphs we introduce a notation for
that too.

Given two vertices a ∈ g, b 6∈ g, to replace a by b in g we write g[a := b].
Formally:

h = g[a := b]

g(a) = 〈c1, ..., cn〉 ⇐⇒ h(b) = 〈c1, ..., cn〉
g(d) = 〈c1, ..., a, ..., cn〉 ⇐⇒ h(d) = 〈c1, ..., b, ..., cn〉

If a is a vertex in g, then to replace its list of children by x we write g[a := x].
Formally, this expands to (g \ ({a} ×U)) ∪ {〈a, x〉}.

To insert a graph h into a graph g such that the root b of h is at vertex a ∈ g,
we write g[a := h]. This is equivalent to adding h to g, and then changing a to
point to the children of b:

g[a := h] = (g ∪ h)[a := h(b)]
where {b} = R(h)

Syntax for graphs
When writing down examples of graphs, a concise notation is convenient. In this
section we propose one that is actually used in the implementation of our graph-
based language. Intuition for this notation is that it is the standard notation
for trees, except that some subgraphs can be named, and whenever the same
name is used in different places, the relevant subgraph is shared in those places.
Let us illustrate it by examples:

Example 1.

2 · x

+ y

Figure 1: Expression ((2 · x) + y) .

Figure 1 shows a tree-like term translated into a graph. Nodes on the graph
that are not named are the same nodes that do not have a name in the original
expression (names are purely for the reader, there are no names and no labels
on the actual graph, just elements of U that we decided to give names to).

If U = N, then both the figure and the textual expression represent graph g
(and every graph isomorphic to it) given by the equations:

10

g(0) = 〈1, 2, 3〉
g(1) = 〈4, 5, 6〉
g(2) = 〈〉
g(3) = 〈〉
g(4) = 〈〉
g(5) = 〈〉
g(6) = 〈〉

where 4 is named “2”, 5 is named “·”, 6 is named “x”, 2 is named “+”, and
3 is named “y”.

Example 2.

2 ·

x+

Figure 2: Expression ((2 · x) + x) .

On Figure 2, the name x is now used in two places, so the node that it names
must be shared.

Example 3.

2 ·

x+

1 −

Figure 3: Expression (let ((x (1 − x))) ((2 · x) + x)) .

On Figure 3 we see the same graph as before, except that x is now a subgraph
with a cycle. This example illustrates that let is a special form that gives names
to subgraphs.

11

Example 4.

2 ·

x+

1 − y

z

÷

Figure 4: Expression (let ((x (1 − y)) (y (z ÷ x))) ((2 · x) + x)) .

The example on Figure 4 demostratets how names can be cross-referenced
within let – the subgraph of x refers to y, and the subgraph of y refers to x.

For the formal definition of parsing of such expressions, we have the grammar
(in BNF [47] notation)

Tree t ::= v | (t1 ... tn) | l
Let l ::= (let (b1 ... bn) t1 ... tk)

Binding b ::= (v t)
Variable v

and the function that does the parsing

12

parse : Tree → G
parse(v) = {〈v, 〈〉〉}

parse((t1 ... tn)) =

{
g, if |R(g)| = 1

g ∪ {r}, otherwise
where
g = parse(t1) ∪ ... ∪ parse(tn)
r = 〈x, 〈r1, ..., rn〉〉
{ri} = R(parse(ti))
x 6∈ g

parse((let (b1 ... bn) t1 ... tk)) = g
where
g = (g1 ∪ ... ∪ gn)[v1 := u1][v1 := r1]...[vn := un][vn := rn]
gi = parse(ti)
{ri} = R(ui)
ui = parse(mi)
bi = (vi mi)

The function is non-deterministic in the sense that depending on the choices
of x the result is a different graph, but all of them represent the same expression.
Furthermore, every graph isomorphic to the resulting graph is also represented
by the parsed expression.

ρs calculus
In this chapter we give a formal semantics for our language. It is dynamic,
meaning that rewrite rules can appear, and dissapear, during evaluation. And
it is non-local, meaning that in a single step of evaluation, we can perform
rewrites in multiple places.

Static language
To begin with, we introduce a static version of the language, static-ρs. A pro-
gram in static-ρs is a ruleset plus an input graph, and its evaluation is the
repeated application of rewrite rules from the ruleset to the input graph.

Program structure

A single rewrite rule in static-ρs consists of a series of “blocks”. A block is like
a traditional rule from term-rewriting, but with a dedicated “input argument”.
Blocks are connected with a sort of an “and”, which means that in order to
match the rule, all match patterns must be matched, and in order to rewrite
according to the rule, rewrites need to happen in order, block-by-block, left-to-
right.

13

The role of the input argument will be apparent when we get to the seman-
tics, but for now, let us define the structure first:

Rewrite block

A rewrite block b is a triple 〈input, mpattern, rpattern〉 where

• input(b) : U is the argument that binds to the root of the graph
to be matched and replaced;

• mpattern(b) : G is the match pattern;

• rpattern(b) : G is the replace pattern.

The set of all rewrite blocks is B.

Example 5.
For an example block we can take an arbitrary input argument, and any two

expressions:

b = 〈v, (c · (x + y)) , ((c · x) + (c · y)) 〉

The implied meaning of this rewrite block is that it simplifies arithmetic
expressions according to the distributive law, but that is only if we assume that
+ and · are constants and that other blocks in the program also treat them

as arithmetic operators.

A rewrite rule also has an input argument:

Rewrite rule

A rewrite rule r is a pair 〈input, blocks〉 where

• input(r) : U is the argument that binds to the root of the subgraph
that the rule currently applies to;

• blocks(r) : B∗ is the list of blocks.

The set of all rewrite rules is R.

Again, the role of input argument will be clear later.

14

Static program

A static program p is a triple 〈input, constant, ruleset〉 where

• input(p) : G is the input term;

• constant(p) : 2U is the set of constant nodes;

• ruleset(p) : 2R is the set of rewrite rules.

The set of constants is global per program, and thus blocks and rules have
precise meaning only in the context of a program.

Program evaluation

Consider a single rewrite block. By analogy to the standard term-rewriting, a
successful match means that there is a way to assign some nodes of the input
graph to the nodes of the match pattern graph, preserving the graph structure
and ensuring that constant nodes map to themselves. In other words, there
must be a homomorphism from the pattern graph to the input graph, restricted
by constants. We generalize this notion of homomorphism to multi-ary homo-
morphism, which maps a single vertex to a list of vertices. The rationalization
for it is that we want to be able to have match patterns that are generic in the
arity of the input term.

Multi-ary homomorphism

A function φ : U ⇀ U∗ is a multi-ary homomorphism from h to g iff

∀
a

(h(a) = 〈a1, a2, ..., an〉 ⇐⇒ ∀
b∈φ(a)

g(b) = φ(a1)∪φ(a2)∪ ...∪φ(an))

We write φ[[h]] = g for short.

It is not required for φ to be the smallest such function.

Matching. With that, we are ready to define what constitutes a match. The
notation g |=φ h denotes a successful match, in which the graph g matches
graph h with the multi-ary homomorphism function φ.

We can look at matching as a model checking problem, where the formula
is the match pattern, which is a formula with no constants, with all variables
being free, and where the model is the input graph. Then the input graph g is
a model of match pattern h if the image of h under φ is a subgraph of g, with
the root of g corresponding to the root of h. The following rule captures this
intuition:

15

φ[[h]] ≤ g φ(d) = 〈e〉 R(h) = {d} R(g) = {e}
g |=φ h

Recall that the homomorphism function returns not a single node, but a list
of nodes, possibly empty, which means that every pattern node can match zero
or more input nodes. This in turn suggests that matching is non-deterministic,
and it in fact is.

Example 6.
The graph (x y) matches the graph (1 2) with these multi-ary homo-

morphisms:3
φ1(r) = 〈r〉
φ1(x) = 〈1〉
φ1(y) = 〈2〉

φ2(r) = 〈r〉
φ2(x) = 〈〉
φ2(y) = 〈1, 2〉

φ3(r) = 〈r〉
φ3(x) = 〈1, 2〉
φ3(y) = 〈〉

φ4(r) = 〈r〉
φ4(x) = 〈〉
φ4(y) = 〈〉

where r is the root of both the pattern and the input graph. Note that the
homomorphism function can give the value 〈〉 to its every node, except for the
root, and that will result in a valid match.

Example 7.
The graph (x y) matches the graph (1 2 3) with φ defined as

φ(r) = 〈r〉
φ(x) = 〈1〉
φ(y) = 〈2, 3〉

being one of possible homomorphisms.

3Technically, listed homomorphisms are only those smallest homomorphisms that match,
but there are infinitely more – those that have redundant mappings.

16

Example 8.
The graph (x (y z)) matches the graph (1 (2 3) (2 4)) with φ de-

fined as
φ(r) = 〈r〉
φ(x) = 〈1, z1, z2〉
φ(m) = 〈〉
φ(y) = 〈〉
φ(z) = 〈〉

being one of possible homomorphisms, where z1 and z2 are the roots of
subgraphs (2 3) and (2 4) , and m is the root of the subgraph (y z) .

Replacement. Replacement may result in creation of fresh nodes that were
not present in the original graph. To express such behaviour we introduce new
notation. Let X be a set of nodes, then φ | X is an extension of φ:

φ(a) = ⊥
(φ | X)(a) = 〈Xa〉

φ(a) 6= ⊥
(φ | X)(a) = φ(a)

Note that in the first consequence, X is used an an indexed set. This index-
ation is arbitrary because all fresh nodes are equivalent. But its construction
can be done deterministically – sort the universe U, then sort X, and then map
the sorted elements according to their positions.

After a successful match there is the replace step which is handled by the
function replace.

While in term-rewriting the rules are applied to subterms of the input term,
our rules are non-local, so they can potentially modify multiple places in the
graph. Yet, applications in our language also happen “at a point”, and so the
replace also happens at a chosen vertex.

Thus, the function replace receives a replace pattern h, an input graph g
together with a vertex a, a multi-ary homomorphism function φ, and a set of
fresh nodes X. Then it constructs a new graph gs by applying the homomor-
phism function to the replace pattern. And finally, it inserts the new graph
back, such that its root is at a in the original graph.

replace(h, g, a, φ,X) = g[a := gs]
where gs = φ′[[h]]

and φ′ = φ | X

Note that only the children of the input subgraph are being replaced. The
intuition for this is that the children are the value of the input subgraph, and
replacement changes just the value, not the reference itself.

Example 9.

17

Given a replace pattern h = (x y z) , with root at a, an input graph
g = () with root also at a, a good enough set of fresh nodes X, and a homo-
morphism φ defined as

φ(a) = 〈a〉
φ(x) = 〈1〉
φ(y) = 〈2, 3, 4, 5〉
φ(z) = 〈6〉

then replace(h, g, a, φ,X) returns the graph (1 2 3 4 5 6) .

Rule closure. So far, we have discussed semantics related to a single match/re-
place pattern pair, but as we have defined it, rewrite rules in static-ρs consist of
an arbitrary number of such pairs, embedded in rewrite blocks. Rule semantics
is similar to that of blocks in that there are two steps – first the match, and
then the replace. Match step is the match of all of the rewrite blocks, and the
rewrite step is a sequence of replacements according to replace patterns of the
rewrite blocks. Crucially, the homomorphism is shared between blocks.

Before we proceed with the semantics for rules, let us introduce another
extension of the homomorphism function:

φ(a) = ⊥
φ(a | b) = 〈b〉

φ(a) 6= ⊥
φ(a | b) = φ(a)

(φ with default value)

We write r |=φ
X g � a to say that the rule r matches g at a, where X is the

set of constants, and φ is the relevant homomorphism.
Computationally, homomorphism is the result of a succesful match – it is

the only unknown in the formula. Even though our rewrite rules contain mul-
tiple match patterns, the statement is true for them as well. By introducing a
composition operator “◦”, we can define match results inductively.

a = input(b)
〈b〉 = φ(a | a)
g′ = g(b)∗

h = mpattern(b)
φ′ ∈ min

|φi|
{φi : h |=φi g′ ∧ φ ⊆ φi}

φ ◦ b = φ′ (mod g)

The composition simply appends the minimal required mappings to the ex-
isting homomorphism. The subgraph to which the match pattern applies is a
subgraph of the input term, so we need to have it in the context, which is writ-
ten as (mod g). This subgraph also depends on the input of b, so the order of
blocks matters here (unless there are no cycles between them). When input is
bound by φ to be the actual input node to be matched, it is also checked that
its value is a singleton list. When input is not bound, then it is independent of

18

the currently matched subgraph, and so it should be understood as a “memory
reference”, as it can be used to model state.

Now it is a matter of picking the initial φ and composing it with all the
blocks that the rule is made of. That initial φ is one that maps constant nodes
to themselves, and with the root of the currently chosen subgraph mapped to
the input of the rule. This way, if the block input is the same as the rule
input, then the block is applied to the root of the currently chosen subgraph.

input(r) = c
φ0 = (id ∩X2) ∪ {〈c, a〉}

blocks(r) = 〈b1, b2, ..., bn〉
φ = φ0 ◦ b1 ◦ b2 ◦ ... ◦ bn (mod g)

r |=φ
X g � a

Here, id is the identity function.

Example 10.
Given a rule r with input(r) = c and blocks(r) = 〈b1, b2, b3〉 with

input(b1) = c

mpattern(b1) = (x y z)
input(b2) = x
mpattern(b2) = x
input(b3) = z
mpattern(b3) = z

and an input graph g = (1 2 3 4 5 6) with root in a, then r |=φ
∅ g � a

returns the homomorphism φ defined as:

φ(a) = 〈a〉
φ(x) = 〈1〉
φ(y) = 〈2, 3, 4, 5〉
φ(z) = 〈6〉

and it is the only homomorphism that matches.
The reason is that we have variables x and y as input arguments, which

forces them to match only singleton lists of variables.
In principle, by requiring all nodes to be input arguments in this way, we

can express regular, non multi-ary homomorphism.

Example 11.
With multiple blocks at our disposal, we can finally show an example match

that fails:

19

Given a rule r with input(r) = c and blocks(r) = 〈b1, b2, b3〉 with

input(b1) = c

mpattern(b1) = (x (y z))
input(b2) = x
mpattern(b2) = x
input(b3) = y
mpattern(b3) = y

and an input graph g = (1 (2 3) (2 4)) with root at a, then there is no
homomorphism that makes r |=φ

∅ g � a true.
The reason is that the vertices y, z need to be mapped to both 〈2, 3〉 and

〈2, 4〉, which is not possible by our definition of multi-ary homomorphism.

The replacement step is now also defined inductively, but the result of re-
placement is a graph, not a homomorphism.

a = input(b)
〈b〉 = φ(a | a)

h = rpattern(b)
X = regular \V(g)

g′ = replace(h, g, b, φ,X)

g ◦ b = g′ (modφ)

The context is now the homomorphism φ that is the result of the previously
performed match. The set of fresh nodes X is the set of “regular” nodes that
are not present in the original graph. For static-ρs every node is regular, but for
ρs there are two non-regular nodes (named eval and root). Basically, a node is
regular if it can be swaped with any other regular node, not affecting the final
structure. A formal definition will be given in later chapters.

Likewise, we define the base step of the induction – it is the input subgraph
in its original form – and get to the (unique) resulting value by applying the
composition operator:

replace*(r, g, φ) = g ◦ b1 ◦ b2 ◦ ... ◦ bn (modφ)
where 〈b1 ◦ b2 ◦ ... ◦ bn〉 = blocks(r)

Putting the two steps together, we get the match-rewrite step semantics:

r |=φ
X g � a

g′ = replace*(r, g, φ)

g � a . g′ (mod r,X)

The context is a rewrite rule r and a set of constant nodes X.
A step in the evaluation of a static-ρs program is a match-rewrite step with

any of the available rewrite rules applied to any of the input graph nodes:

20

r ∈ ruleset(p)
X = constant(p)
g � a . g′ (mod r,X)

g � a . g′ (mod p)
g � a . g′ (mod p)
g . g′ (mod p)

Example 12.
The following example demostrates a non-confluent system.
Given a program p defined by:

input(p) = (0)
constant(p) = {1, 2}
ruleset(p) = {r1, r2}
input(r1) = c
blocks(r1) = 〈b1〉
input(b1) = c

mpattern(b1) = (x)
rpattern(b1) = (1)
input(r2) = c
blocks(r2) = 〈b2〉
input(b2) = c

mpattern(b2) = (x)
rpattern(b2) = (2)

after a single match-rewrite step, we get two values – (1) and (2) , de-
pending on which of the two rules is chosen.

Finally, the semantics of static ρs is just the transitive reflexive closure of
the relation g . g′ (mod p), without the intermediate edges:

g = input(p)
g .∗ g′ (mod p)
@
g′′

g′ . g′′ (mod p)

〈p, g′〉 ∈ static-ρs
So, the values of a static program p are: {g : 〈p, g〉 ∈ static-ρs}.

Example 13.

21

Given a program p defined by:

input(p) = (1 + 2 + 3 + 4 + 5)
constant(p) = {+,−}
ruleset(p) = {r}
input(r) = c
blocks(r) = 〈b〉
input(b) = c

mpattern(b) = (xs + ys)

rpattern(b) = (xs − ys)

The final value of the program is (1 − 2 − 3 − 4 − 5) , but the inter-
mediate ones are with all the combinations of + and − in them.

Dynamic language
The language that we are proposing is a dynamic version of static-ρs, called ρs.
The main difference is that in ρs programs are just graphs. But, conceptually,
the transition from static to dynamic semantics is very simple:

1. define redex,

2. specify evaluation strategy,

3. specify encoding of static-ρs programs on the input graph.

A redex is a subgraph that encodes a static-ρs program. More specifically:

Redex

A redex in g is a closure g(c)∗ for some c such that g(c) = 〈eval, a, b〉.

The meaning of eval, a and b is that eval is a node specifically chosen to
denote the root of a redex (all redexes share it), a represents an encoded static-ρs
program, and b limits the scope of application of the program4.

The evaluation strategy is “parallel inner-most” which means that bottom-
most redexes are reduced first, except that when there are many bottom-most
redexes, then only one of them is reduced first.

The last step is the most arbitrary, so we will deal with it later.
The particular details are a bit more complicated, so in the following we

define the precise semantics of ρs.
There are two notions that we will use in definitions – those of environment

and focus. An environment is just a subgraph of the original graph that encodes
4In our definition, a redex does not have to be immediately reducible, it is enough to look

like a reducible expression.

22

the “currently applicable” rewrite rule. It always comes with an accompany-
ing subgraph to which it applies, called the “body”. A focus is a vertex that
identifies the subgraph to which evaluation is restricted. It is common to define
term-rewriting semantics by “subterm recursion”. What we do is “subgraph
recursion”, where the subgraph is uniquely determined by the focused vertex.
We use the notation g � a to say that g is currently focused on a.

To provide a high-level description of the semantics, we imagine an evalua-
tor that implements it. The evaluator runs one step at a time, with each step
associated with a particular environment. Given an input graph, the evaluator
first searches for a valid bottom-most environment. When found, the evaluator
decodes its rewrite rule, and tries to apply it to the accompanying body. Ap-
plication is successful if there is any vertex in the body that matches the rule.
Each step ends with a succesful application that changes the input graph, and
the whole process is just a series of steps applied to the input graph.

Every ambiguity, be it with choosing the appropriate environment (since
there can be many “bottom-most”), or with choosing the one vertex among
many body vertices that match the rule, is resolved by running all possibilities
in parallel. Formally this means that every choice is non-deterministic.

Reduction

We use small-step operational semantics for our calculus, which means that a
relation is defined that evaluates a single step of the evaluation process, so that
the transitive closure of it is the target language semantics. We first define the
relation g � a −→

h
g′. The interpretation of it is that the graph g focused on a

reduces to g′ in the environment h. We then fill in the defaults, and then close
it to get the ρs calculus. The following rules operate on the whole graph, with
a “focus” serving as a pointer to the currently evaluating subgraph. This is
because, unlike with trees, the “substructure” that we recurse into is a general
subgraph, and it is not easy to perform operations on a subgraph and then
somehow propagate the results up.

@
g′
g � a −→

∅
g′

g � a ⇓ (R-NORM)

g � a ⇓ d ∈ g(a)∗ g � d . g′ (modh)
g � a −→

h
g′

(R-REWR)

d(eval, e, c) ∈ g(a)∗ d 6∈ g(c)∗ g � c −−−→
g(e)∗

g′

g � a −→
h
g′

(R-EVAL)

Rule R-NORM is just a normal form predicate. It refers to the main relation,
but with an empty environment, so it does not ever recurse to itself because the
next rule is the only user of R-NORM, and it rejects empty environments. That

23

next one is R-REWR, it checks if the focused subgraph is already normalized, then
picks a node, and performs a match-rewrite step on it by decoding the static
program from environment h and then performing one step in the evaluation
of the program. The last one, R-EVAL, searches for the special node, named
eval, and if found, it updates the environment, and recurses down. If g is finite,
then there is always a finite amout of recursion steps to be done, because the
predicate does not work unless there are no cycles in the subgraph (the second
clause in the premise checks that).

Note that there is a great lot of non-determinism that comes from three
factors:

1. the rule R-REWR can choose any of the subgraph nodes to rewrite,

2. the match-rewrite step is also not deterministic, as there could be many
ways to match a pattern,

3. the rule R-EVAL can recurse on any of the evals below it.

Before we define the values of a ρs program, we must turn our attention to
the problem of garbage collection. After a replace step is performed, the graph
is often split in such a way that there is the “new” part that we consider the true
result, and there is the part that is no longer needed and cannot be accessed
from the new part. For example, this happens if we replace the children of a
node a with the empty list of children when a was the only parent for those
children. To deal with it, we decide that every graph has a root, and it is only
the vertices reachable from the root that are interesting to us. With another
special vertex root ∈ U we are ready to define the full semantics, similarly to
how we did it in the case of the static language:

g � a −→
∅
g′

g −→ g′

g
∗−→ g′

@
g′′

g′ −→ g′′

a = root

〈g, g′(a)∗〉 ∈ ρs

There are at least two technical observations that require attention. First,
the root is not actually required to be one of the roots of the input graph or
the resulting graph. But in all our examples, it is. Second, it is important to
note that if g is in normal form with respect to g −→ g′, then its closure starting
from root also is (see Lemma 3).

Parsing

At this point we are left to describe how the application of g � d . g′ (modh)
works, that is, how parsing of the encoded program h is done.

Let us assume that a static program p is encoded. First, we require R(h)1... =
〈a, b, c〉, and then for each ei in 〈e1, e1, ...en〉 = h(c), it must be that h(ei) =
〈an, bi, ci〉.

24

The input term is the whole ρs program, so input(p) = g. There is al-
ways only a single rewrite rule in the encoded programs, so ruleset(p) = {r}.
Then input(r) = a, and constant(p) = R(b)1.... The subgraph h(c)∗ encodes
blocks(r) such that each ei points to an encoded block.

Given that blocks(r) = 〈b1, b2, ..., bn〉, we have

• input(bi) = ai,

• mpattern(bi) = bi,

• and rpattern(bi) = ci.

If any of the assignments fail, then the encoding is invalid, and the result of
the match/rewrite step is as if the patterns did not match the input subgraph.

Formalizing the above description, we get the decoding function:

decode(g, h) = p
where

R(h)1... = 〈a, b, c〉
h(c) = 〈e1, e1, ...en〉
h(ei) = 〈ai, bn, ci〉
input(p) = g
ruleset(p) = {r}
constant(p) = R(b)1...
input(r) = a
blocks(r) = 〈b1, b2, ..., bn〉
input(bi) = ai
mpattern(bi) = bi
rpattern(bi) = ci

and the semantics for match/rewrite step:

p = decode(g, h)
g � d . g′ (mod p)
g � d . g′ (modh)

Example 14.
Given input graph g = (1 + 2 + 3 + 4 + 5) and environment h:

(g (+ -)
((g (xs + ys) (xs - ys))))

25

we get decode(g, h) = p, where p is defined by:

input(p) = (1 + 2 + 3 + 4 + 5)
constant(p) = {+, -}
ruleset(p) = {r}
input(r) = c
blocks(r) = 〈b〉
input(b) = c

mpattern(b) = (xs + ys)

rpattern(b) = (xs - ys)

This is the same program as in the Example 13. So, given a ρs program:

(eval (g (+ -)
((g (xs + ys) (xs - ys))))

(1 + 2 + 3 + 4 + 5))

its final value is:

(eval (g (+ -)
((g (xs + ys) (xs - ys))))

(1 - 2 - 3 - 4 - 5))

Example 15.
Given a ρs program:

(eval (g ()
((g (x y z) (y))

(x x x)
(z z z)))

(1 2 3 4 5 6))

its evaluation is fully deterministic, with intermediate values being (in order):

(eval (g ()
((g (x y z) (y))

(x x x)
(z z z)))

(2 3 4 5))

(eval (g ()
((g (x y z) (y))

(x x x)
(z z z)))

(3 4))

26

(eval (g ()
((g (x y z) (y))

(x x x)
(z z z)))

())

Example 16.
In this example we demonstrate horizontal composition of rewrite rules. Re-

call that every redex in ρs stands for a single rewrite rule. However, by com-
posing several redexes we can achieve the same result as if there was a single
redex encoding multiple rewrite rules.

The following ρs program:
(l e t ((body (x))

(const (x 0 1)))
(eval (g const

((g (x) (0))))
body)

(eval (g const
((g (x) (1))))

body))

emulates that of the Example 12. Its values are:
(l e t ((body (0))

(const (x 0 1)))
(eval (g const

((g (x) (0))))
body)

(eval (g const
((g (x) (1))))

body))

(l e t ((body (1))
(const (x 0 1)))

(eval (g const
((g (x) (0))))

body)
(eval (g const

((g (x) (1))))
body))

Example 17.
Vertical composition is another type of placement for redexes where one is

on top of the other. Our evaluation order dictates that in such situation, the

27

bottom rule should be tried first, and only if it fails, then the top one should be
tried.

The following ρs program:

(l e t ((const (0 1 / undefined)))
(eval (g const

((g (x / x) (1))))
(eval (g const

((g (x / 0) (undefined))))
(3 + (5 / 5)))))

evaluates to:

(l e t ((const (0 1 / undefined)))
(eval (g const

((g (x / x) (1))))
(eval (g const

((g (x / 0) (undefined))))
(3 + (1)))))

Example 18.
Let us demonstrate how non-local rewriting works. In the following example,

switch will be a subgraph that is rewritten from (off) to (on) . What is
important, is that switch is not present in the body of the eval block. In fact,
the body is ignored completely, and only the switch is modified.

Given a ρs program:

(l e t ((switch (off)))
(eval (g (off on)

((switch (off) (on))))
body))

its final value is:

(l e t ((switch (on)))
(eval (g (off on)

((switch (off) (on))))
body))

Example 19.
In the Context section we have stated that conditionals based on formulas

can be expressed. The following example demonstrates what we meant.
In this example we encode the relation of addition of numbers up to 2 and

use it as a conditional expression.
The following ρs program

28

(l e t ((body (1 + 1 = 2))
(const (0 1 2 3 4 + = true false))
(R-addition

((0 0 0)
(0 1 1)
(0 2 2)
(1 0 1)
(1 1 2)
(1 2 3)
(2 0 2)
(2 1 3)
(2 2 4))))

(eval (g const
((g (x + y = z) (false))

(x x x) (y y y) (z z z)))
(eval (l e t ((tuple (x y z)))

(g const
((g (x + y = z) (true))

(x x x) (y y y) (z z z)
(R-addition (xs tuple ys)

R-addition)
(tuple tuple tuple))))

body)))

reduces body to (true) . If body would initially be (1 + 1 = 3) , then
it would be reduced to (false) .

Since rules in ρs can rewrite other rules, relations like R-addition can be
constructed during evaluation. Furthermore, we can treat some variables as
free. For example, we can make z to be treated as a free variable by changing
the rule
(l e t ((tuple (x y z)))

(g const
((g (x + y = z) (true))

(x x x) (y y y) (z z z)
(R-addition (xs tuple ys) R-addition)
(tuple tuple tuple))))

into
(l e t ((tuple (x y r)))

(g const
((g (x + y = z) (x + y = r))

(x x x) (y y y) (z z z)
(R-addition (xs tuple ys) R-addition)
(tuple tuple tuple))))

which rewrites body = (1 + 1 = ?) to (1 + 1 = 2) .

29

Many more examples can be found (and run) in the implementation reposi-
tory[51] under example/ directory. For instance:

• example/loop-pattern.scm is a program that uses a cyclic match pat-
tern.

• example/addition-fork.scm is a program that adds natural numbers.

• example/lambda.scm is a program that interprets lambda calculus ex-
pressions.

Properties
One of the most obvious things with ρs is that it is non-confluent. We show
that even a one-rule, one-step static-ρs program can be non-confluent.

Proof. Example of a one-rule non-confluent static-ρs program is one that con-
sists of the block 〈a, (x + y) , (x) 〉 where + is a constant. This program
rewrites (1 + 2 + 3) into (1) and (1 + 2) .

In the following lemma we prove that unreachable nodes remain unreachable
forever. First we define connected components of a graph and prove that it
cannot be that after a step of evaluation different components merge.

Connected component

A graph g is connected if for all its vertices a, b ∈ V(g), either a is
reachable from b, or b is reachable from a.
A connected component of a graph h is a subset of h that is a connected
graph and is not a subset of any other connected component.

Lemma 1. Let g be a graph and h1 6= h2 be its connected components. Then
for every g′, a such that g� a −→

∅
g′ there do not exist connected components of

g′ that share vertices with both h1 and h2.

Proof. Assume that the statement is false. This means that there must be
vertices b1 ∈ h1, b2 ∈ h2 that are adjacent in g′ but not in g since h1 and h2 do
not share any vertices (given h1 6= h2). By examining definition of reduction
relation we see that new edges are only created in replace. Specifically, these
edges are:

• (CASE A) edges connecting the focused root to the children of the root
of graph gs

5,

• (CASE B) edges connecting vertices of graph gs.
5We refer to the graph used in definition of replace, page 17.

30

One of those edges must be between b1 and b2.
Let us examine where vertices of gs come from. The graph is created by

applying homomorphism function to the replace pattern. Thus, its vertices are
either from the relative blocks (specifically, from their match patterns, or from
their input arguments), or they are fresh. All vertices of the encoded blocks
come either from h1 or from h2 or from an another connected component, call it
h3. This is because every environment is a connected graph (see Parsing, page
24). If they come from h3, then:

• (CASE A) Note that the focused root is also in h3 because it is an element
of the body of the current redex (see rule R-REWR, page 23), and the body
is connected with the environment (see Parsing, page 24). This way, both
b1 and b1 are from h3.

• (CASE B) In this case, new edges connect vertices of h3 and fresh nodes.
Since no fresh node comes from h1 or h2(see creation of fresh nodes, page
20), this case also fails.

In cases where vertices of the encoded blocks come from h1 or from h2, the
choice is symmetric. Assume that they come from h1, then:

• (CASE A) the root is also in h1, so both b1 and b1 are from h1.

• (CASE B) new edges connect vertices of h1 and fresh nodes. Since no
fresh node comes from h2(see creation of fresh nodes, page 20), this case
also fails.

We have tried every case and each time arrived at a contradiction, thus the
assumption must be false.

The lemma allows us to focus on a single connected component, that of root,
and ignore those subgraphs that disconnect during evaluation, because once
they have disconnected, they will never connect to root again. This implies
that implementations of ρs can collect garbage during evaluation, without the
need to wait until the whole process finishes, as it would seem to be required
by the definition of the final semantics of ρs.

In the following lemma we prove that, in particular, redexes only modify
themselves.

Lemma 2. Let g, g′ be graph and a be a vertex such that g � a −→
∅
g′. If

g(b) 6= g′(b) then b and all c ∈ g′(b) are either not in g, or reachable from a child
of a redex reachable from a in g.

Proof. Definition of relation g � a −→
∅
g′ has two cases – R-EVAL and R-REWR.

The case of R-REWR does not apply to empty environments. In case of R-EVAL,
the definition recurses on a redex gr (reachable from a) with a new environment

31

h. Apply definition of g � a −→
h
g′. In case of R-EVAL, we now just recurse on

a smaller subgraph, so inductive hypothesis can be used. In case of R-REWR,
we have the parsing and then running of a static-ρs program. Parsing phase
assures that our environment graph is connected and reachable from a child
of gr (FACT A). By examining semantics of evaluation of static programs, we
comfirm again that modifications to the original graph all happen in function
replace (see definition of replace, page 17). Furthermore, what is rewritten is
either a block input argument, or a focused vertex, or a fresh node, previously
not present in g. By FACT A we know that input arguments are reachable from
children of gr. By definition of R-REWR, focused vertex is reachable from children
of gr. By definition of fresh nodes, they are not present in g (see creation of
fresh nodes, page 20).

Therefore, not only the unreachable subgraphs cannot be rewritten, but
roots as well.

Corollary 1. If g, g′ are such graphs that g −→ g′, then R(g) ⊆ R(g′).

Proof. Assume that statement is true. Then there must be a root vertex a in g
that is not a root of g′. From the definition of a root, there must be c such that
a is its child, i.e. a ∈ g′(c). But by Lemma 2 this means that a is reachable
from children of a redex of g, contradiction.

When can a subgraph be substituted with its value? One generic case is when
it does not share its body with anyone. To state this formally, we introduce a
concept of a context.

Graceful context

Fix a graph h. A graceful context is a function fh : G⇀ G that for every
g returns g ∪ h if V(g) ∩V(h) = {b} = R(g). Graph h is referred to as
“context constant” and graphs g are referred to as “context arguments”.

A graceful context does not access anything but the root of its argument.

Theorem 1. If g is a graph, then for every k, if there is a unique g′ in g (k)−−→ g′,
then for every graceful context fh defined on g, g′ and for every graph g′′ we
have

〈fh(g), g′′〉 ∈ ρs ⇐⇒ 〈fh(g′), g′′〉 ∈ ρs

Proof. Consider three cases.

1. If h = ∅, then fh(g) = g and fh(g
′) = g′, thus, by definition of ρs, these

graphs evaluate to the same thing.

2. If V(h)∩V(g) = ∅, then this implies V(h)∩V(g′) = ∅ because no program
can rewrite its own root (by Corollary 1). Then by Lemma 2, h has no
impact on g, g′, and at least one of the graphs will dissapear at the end

32

(because it is not reachable from root). If h dissapears, then go to the
first case. If g, g′ dissapear, then the result is h.

3. If V(h) ∩V(g) = {b},
then there are two groups of redexes – those from which there is a path
to the context argument (GROUP A), and those from which there is not
(GROUP B). Focusing on the latter, note that reductions in this group
change only the context constant, and independently of the context argu-
ment. In other words, for every possible reduction of these redexes taking
fh(g) to fh′(g) there is a mirroring reduction taking fh(g

′) to fh′(g′).
By repeating this logical step, there are two possible outcomes – either
reductions in this group will never terminate, or they will stop at at par-
ticular point. In the first case, this satisfies our definitions, since both
sides would not terminate. In the second case, we can apply inductive hy-
pothesis, since only the context has changed and it has simplified. Thus,
assume that context constants do not have redexes of GROUP B that are
able to reduce further. Then, observe that between g and g′ there are
no intermediate normal forms. This implies that GROUP B of context
redexes cannot reduce until g reduces to g′. The reason is that our evalu-
ation strategy ensures that the bottom-most redex is reduced first. This
concludes the proof.

This property is particularly useful for implementations of ρs. If interpreters
can detect if a redex body is shared, they can compile the redex and apply it
many times at once.

For more general contexts, the issue becomes that their redexes can start
modifying the shared body with unpredictable consequences. In that case, the
only thing that we can hope to assert is that the value that we would like to
substitute will be in the set of the final results, wraped in its context, of course.

Lemma 3. If graph g is in normal form, then its every closure h also is.

Proof. Note that every redex of g is a closure of g. Also, a closure starting from
a of a closure of g is either g(a)∗ or ∅, which follows from its definition. This
implies that the set of redexes of h is a subset of redexes of g – those closures
equal to ∅ stop being redexes. But this means that none of the redexes of h are
active, since none of them were active in g. Thus, h is in normal form, having
no active redexes.

Graph calculi
In this section we introduce a general model for graph-based languages, of which
ρs-calculus is a special case. We then adopt a definition of expressiveness of

33

tree-based languages to graph-based languages, with the primary goal of using
it later for ρs.

In programming terms, calculus is just the semantics. It is to be interpreted
as such a relation that joins input terms with fully evaluated terms; it is the
“evaluation function” of a graph-based language.

Graph calculus

Relation C : G × G is a graph calculus if ∀
g∈im(C)

{g} = {h : C(g, h)}.

The set of all graph calculi is C.

Since every evaluated graph can only be further evaluated to itself, the rela-
tion restriction is placed. But in order to support non-deterministic languages,
we do not really insist on the “evaluation function” to be a function. Our defi-
nition does not rely on a separate value domain because our values are graphs,
just like the inputs.

Example 20.
Of course, ρs is a graph calculus. The only condition of the definition is

satisfied by the fact that ρs is defined by a transitive reflexive closure, so normal
forms evaluate to normal forms.

Example 21.
To illustrate a very basic example of a graph calculus, we define a language

of arithmetic expressions, named “gexp”. It can only parse zeroes and ones as
numbers. The semantics can be ilustrated by a single example: for the graph
((1 + 1)× (1 + (1 + ((0− 1)+ 1)))) , gexp returns the graph 4 .

To describe it formally, we need to define two functions: one for the calcula-
tions, and one for the encoding of natural numbers. Calculations can be defined
by the function calc:

calc : U∗ ⇀ G⇀ Q
calc[[〈a,+, b〉]](g) = calc[[〈a〉]] + calc[[〈b〉]]
calc[[〈a,−, b〉]](g) = calc[[〈a〉]]− calc[[〈b〉]]
calc[[〈a,×, b〉]](g) = calc[[〈a〉]]× calc[[〈b〉]]
calc[[〈a,÷, b〉]](g) = calc[[〈a〉]]÷ calc[[〈b〉]]
calc[[〈0〉]](g) = 0
calc[[〈1〉]](g) = 1
calc[[〈a〉]](g) = calc[[g(a)]]

where nodes +,−,×,÷,0,1 are some fixed nodes, exact value of which
depends on U.

The function that encodes numbers to graphs is:

num(n) = {〈f(n), 〈〉〉}

34

where f is an arbitrary injective function that maps natural numbers to
vertices. This function is also fixed for U, and we call it the encoder of gexp.

Then using these functions, the actual semantics is:

〈g, g′〉 ∈ gexp ⇐⇒ g′ = num(calc[[a]](g)) ∧ {a} = R(g)
∨ g′ = num(num−1(g))

Modularity
Languages are often understood in terms of their “features”. But what exactly
those “features” are, is hard to pin down. In our case, we can be most abstract
and say that a feature is something that has a corresponding set of languages
that implement it. Those that do are the good languages (with respect to that
feature).

Language feature

Given a set F, if α is a member of F, then α is a feature and good(α) is
a set of calculi.

It is true that there are infinitely many ways to define a calculus by the set of
its features, and with one set no different than the other, it makes decomposition
impossible. To combat this issue, we will narrow our scope to “named” features.

First, we need to define isomorphisms.

Ordered graph isomorphism

Given two graphs g and h, the isomorphism between them is a bijection
ψ : U ⇀ U mapping vertices of g to h:

∀
x

g(x) = 〈y1, y2, ..., yn〉 ⇐⇒ h(ψ(x)) = 〈ψ(y1), ψ(y2), ..., ψ(yn)〉

We write ψ[[g]] = h for short. Graphs g and h are isomorphic, which is
written as g ∼= h.

Now we want to express the intuition of constants, or “special symbols”.
Then a feature will be identifiable by a fixed set of constants. Special nodes
are best understood by their complement – regular nodes. A regular node is a
node that can be replaced by any other node, on every occaision, except by the
special nodes.

In the following definition, the notation [x]R denotes the equivalence class
of x in R, i.e. [x]R = {y : R(x, y)}.

35

Special node

Every calculus C has a set of equivalent nodes:

∀
g,h

C(g, h) ⇐⇒ C(ψ[[g]], ψ[[h]])

ψ(a) = b

a ∼=C b

With that, consider the following system of equations:

regularC = {a : [a]∼=C
= U \ specialC}

specialC = dom(∼=C) \ regularC

The set of regular nodes of C is the biggest set regularC for which the
equations hold, or the empty set if there is no biggest one. Then the set
of special nodes, specialC, is just the complement of regularC. The
index “C” in specialC can be omitted if it is unambiguous.

Note that if dom(∼=C) = U, then the set of regular nodes of C is just the
biggest equivalence class of ∼=C, and for dom(∼=C) = U smaller than U, the set
of regular nodes is empty.

Example 22.
For ρs, the set of special nodes is just two nodes: specialρs

= {eval, root}.

Example 23.
For the language gexp with encoder f , the set of special nodes is infinite:

specialgexp = {+,−,×,÷,0,1} ∪ im(f).

Equality
If we know which nodes are special, then we can say which graphs will return
the same values, regardless of the language semantics.

Graph equivalence

Two graphs are equivalent, in a given calculus, if there is an isomorphism
between them that maps special nodes to themselves. Notation g ∼=C h
stands for the equivalency between g and h in the context of C ∈ C.

It is easy to see that graph equivalence is an equivalence relation, and that
equivalent graphs reduce to the “same value”.

36

Expressiveness
We now say that a feature is redundant if, for every program that uses it,
we can “disable” the feature and add a graph that implements it instead. To
make sure that implementation is separate from the original program, we add
not exactly the implementing graph, but a graph equivalent to it. However,
the implementation can (and often must) share special nodes with the original
program.

Redundancy

A feature α is redundant for calculus C if there exists a calculus C′ ∈
good(α) and graph h for which we have

∀
g,g′,h′

h′ ∼=C′ h ∧V(g) ∩V(h′) ⊆ specialC′

=⇒ C′(g, g′) ⇐⇒ C(g ∪ h, g′)

Graph h is said to be the implementation of α (for C). Graphs g are
referred to as “the original programs”.

Example 24.
Let us introduce a feature for gexp and then show that it is redundant in

that calculus.
For the feature definition it is enough to show a single example of a calculus

that has the semantics that we are intereseted in. This example calculus we call
gexp+5 and define it exactly the same way as gexp, except that the function
calc of gexp+5 is extended by a single case:

calc[[〈5〉]](g) = 5 if g(5) = ⊥

So we are expressing the constant 5.
Note that for the original calculus the value of (5 + 5) was not defined

(because it could only parse ones and zeroes), but for the new calculus it is
defined and equal to 10 .

Our target feature α is defined by good(α) = {gexp+5}.
We pick the graph (1 + (1 + (1 + (1 + 1)))) , with its root equal to the

special node 5, to be the implementation of α. This way, every time the root is
mentioned in a gexp program, its children become the children of the implemen-
tation graph, and the original semantics simply ignores the root and recurses
on (1 + (1 + (1 + (1 + 1)))) .

The conditional “if g(5) = ⊥” is needed for the reason that when adding the
implementation graph to the original program, only the implementation graph
must define the children of 5, otherwise the program graph will not be a proper
function.

37

Redundancy is a stronger notion6 of expressiveness than the the usual notion
adopted for tree-based languages [52]. This is because, by definition, the usual
notion allows us to add a graph (that implements the feature) before applying
the evaluation function, but also allows to add more than just constant graphs.

At the same time, our notion is, in a sense, more general. That is because
languages that support macros can turn constant graphs into what the usual no-
tion permits, and we can always consider languages that have macro expansion
as a first phase, and then proceed normally.

Expressiveness of ρs

In this section we study the space of features that are redundant for ρs. For
that reason, we group them into conceptual categories, such as “library leatures”.
Categories are defined as templates parameterized by functions that express the
conceptual semantics. When such template is instantiated, it becomes a rule
that defines step transition in the semantics of a new language. This rule then,
together with R-NORM, R-REWR and R-EVAL, defines a new version of relation
g � a −→

h
g′, which in turn is used to define a new language, in exactly the

same way as ρs is defined by R-NORM, R-REWR and R-EVAL. The newly created
language is then said to have the feature that we intended to express.

Library features
It turnes out that in order to express most practically useful features, one cannot
simply follow the pattern “feature = subtree” when specifying features (the
way it was possible in case of gexp) because it will not work. First of all, ρs
only evaluates closed graphs. Second, even if we could evaluate open graphs,
an implementation that is placed under a special node would be subject to
rewriting by the rules that lie above it. Thus, one should instead put the
implementation “on top of” the special node that defines the feature. To prevent
the original program the from modifying the implementation code, we can chose
implementations that only share a single additional7 special node, children of
which are not defined in the implementation.

We will also assume that there only is a single “input argument” in the
feature application. In the following rule, a is the special node that names the
library feature, and b is the input argument:

g(a) = 〈b〉
apply a to b in g

Based on that, let us define a template:
6In the sense that there are fewer redundant features than there are expressible.
7The nodes eval, root are the existing special nodes and the node that “names” the feature

is the additional one.

38

g � a ⇓ g′ ∈ f(g(b)∗) apply a to b in g
g � a −→

h
g[b := g′]

(R-ALIB(a,f))

This template defines rule R-ALIB that is parameterized by the special node
a : U and by f : G → 2G. Let us now formally define the family of features
generated by the template:

Atomic library feature

Fix a vertex a and a function f , and let the calculus C be defined by
the rules R-NORM, R-REWR, R-EVAL and R-ALIB(a,f). Then every feature
α with C ∈ good(α) is an atomic library feature defined by f and a.

Note that the function f is stateless and works on a local (focused) part
of the graph, which is in normal form. While the normal form requirement
is obvious – redexes do no activate unless their body is in normal form – the
other restrictions do limit the space of features expressible in ρs. The reason
is that redexes in ρs can modify not only the currently focused subgraph (i.e.
it is non-local), and that each application of a feature implemented with eval
can result in a different subgraph (i.e. eval is stateful). On the other hand, we
can see that R-ALIB defines features that work in a single step of evaluation.
This is a very strict requirement, which means that, conceptually, every such
feature must be evaluated atomically. Some features surely can be expressed
atomically, for example those that require only a single rewrite rule application
to implement, because single rewrites indeed happen atomically.

One particularly useful family of atomic features that are expressible in ρs
are “atomic compare-and-swap” features. The intuition here is that such a
feature compares the input graph to the fixed graph g, and if they are equal,
rewrites the input to the fixed output graph h, and all of this happens in one
step of the evaluation:

Atomic compare-and-swap feature

Fix graphs g 6= ∅ and h that are in normal form. An atomic library

feature defined by function f(x) =

{
{h}, if x = g

∅, otherwise
, is an atomic

compare-and-swap feature defined by g, h and a.

Lemma 4. Every atomic compare-and-swap feature is redundant for ρs.

Proof. Let g, h and a define the target compare-and-swap feature.
The approach that we take is to build a rewrite rule that matches exactly

and only the graph g, and rewrites the vertices in the input graph to point to
newly created lists of vertices.

39

First, assume that all vertices of g and h are constants (in the sense that
rules treat them as such). Note that these vertices are special in the target
language, so we can use them in our rewrite rules without the fear of them
getting replaced (only regular nodes get replaced).

Then, inductively construct a rewrite rule according to the following scheme:
for each vertex e such that g(e) = 〈b1, ..., bn〉, add this rewrite block:

〈e, (b1 ... bn) , e 〉

The added blocks perform the comparison, without rewriting anything yet.
If n > 0 then each block checks that its argument e has exactly n children,
which are bi.

Then, to rewrite the graph, for each vertex c such that h(c) = 〈d1, ..., dn〉,
add this rewrite block:

〈c, c , (d1 ... dn) 〉

Let r be one of the roots of g, then add these rewrite blocks at the end of
the rule:

〈a, (b) , () 〉
〈b, r , b 〉

Their purpose is to check that the root of the input graph b is one of the roots
of g, and then to disconnect the input argument from the implementation once
the graph has been rewritten.

If we assume that g does not have any leaves (that is nodes a for which
g(a) = 〈〉), then this single rule we just constructed is enough. Leaves, however,
are not checked by the constructed rule because patterns with no children accept
every input graph. In order to check the leaves we must use vertical composition.

For each leaf e ∈ g, construct an additional rewrite rule with just four rewrite
blocks:

〈e, (x xs) , e 〉
〈x, x , x 〉
〈a, (b) , () 〉
〈b, b , b 〉

Such groups of blocks matche only if e is not a leaf. Thus, if we put these
rules such that they are in the body of the first rule, we prevent activation of
the first rule in case any of the nodes supposed to be leaves are not leaves.

Every rule created by these blocks only matches if the input argument has
been given to the implementation, and if they succeed in the match, they dis-
connect the argument as well.

Not all features need to be atomic. We add another assumption to our
template in order to capture the regular, nonatomic features:

40

g � a ⇓ g′ ∈ f(g(b)∗) apply a to b in g R(g−, g, g+)

g− � a −→
h
g+[b := g′]

(R-LIB(a,f,R))

The rule R-LIB is now parameterized by a : U, by f : G → 2G, and by
R : G×G×G.

Additionally, R must be such that:

R(g−, g, g+) =⇒ g−
∗−→ g

∗−→ g+

Basically, by adding R we allow the input and the output graphs to be
separated by an arbitrary number of steps.

Now we can define the regular library feature.

Library feature

Fix a vertex a and a function f , and for each relation R let cal-
culi C1,C2,C3, ... be defined by the rules R-NORM, R-REWR, R-EVAL and
R-LIB(a,f,R). Every feature α with ∀

i

Ci ∈ good(α) is a library feature

defined by f and a.

Computable library features
So far we have not mentioned computability of parameterized functions, but it
matters. If we limit ourselves to finite graphs, then by Church-Turing thesis [53],
it is not possible to express functions in ρs that are not computable. But library
functions act on subgraphs, not on numbers or strings, so the usual notion of
computability does not apply to them directly. So as it is usually done in
practice, we need to first encode graphs as strings, and then judge whether the
function on econded graphs is computable:

Computable graph function

A function f : G → G is computable when there exists a computable
function ψ : Σ∗ → Σ∗ (for some fixed alphabet Σ), and a bijection
φ : G → Σ∗, such that ∀

g,h

f(g) = h ⇐⇒ ψ(φ(g)) = φ(h).

Computable library feature

A library feature defined by a computable function is a computable li-
brary feature.

Theorem 2. Every computable library feature is redundant for ρs.

41

Proof. The outline of the proof is as follows:

1. design a low-level language capable of arbitrary graph manipulations,

2. embed this language into ρs,

3. design a higher-level language that is more convenient for large programs,

4. write graph encoding and decoding algorithms in this language,

5. translate this language to the first one in order to show that encoding is
possible in ρs,

6. implement a Turing Machine emulator in ρs that works on encoded graphs,

7. ensure that atomicity is preserved.

Step 1. We will design a very simple stack-based language, “gstack”, with the
notable properties that there is no addition/subtraction/zero test, but instead
cons/car/cdr and null test builtins (since we are dealing with graphs), and no
builtin looping construct (since the source code but can contain many natural
loops through itself).

The syntax of gstack is:

Command c ::= null | cons | car | cdr | set
| (push v) | (pop v)
| (if null? c c) | (if eq? c c) | (and c c)

Variable v ::= v1 | v2 | v3 | ... ∀
vi∈U

A program in gstack is just a Command. As for the semantics, it is easier
to define it in ρs directly. One variable among all the vs is chosen to be “an
input”, and one other to be “an output”.

Step 2. We are going to write a ρs program that has a gstack program
encoded in the variable start. Here is the first part:

1 (l e t ((const (null cons car cdr set
2 push pop
3 if null? eq? and
4 do stack))
5 (stack ())
6 (do (start)))

It defines constant nodes, which mostly coincide with the constants in gstack
syntax definitions, but also contain do and stack. The first one, do, is a node
that serves as a pointer to the currently running instruction. At the begining it
points to start. The second one, stack, is a node whose children are the stack
content. Initialy the stack is empty, so stack is child-free.

What follows after these definitions are the rules for interpreting every in-
struction (we will pause after the first 5):

42

7 (eval (g const
8 ((do (command) (rest))
9 (command (and null rest) command)

10 (stack (ss) (() ss))))
11 body)
12
13 (eval (g const
14 ((do (command) (rest))
15 (command (and cons rest) command)
16 (stack (s1 s2 ss) ((s1 ys) ss))
17 (s1 s1 s1)
18 (s2 (ys) s2)))
19 body)
20
21 (eval (g const
22 ((do (command) (rest))
23 (command (and car rest) command)
24 (stack (s1 ss) (x ss))
25 (s1 (x xs) s1)
26 (x x x)))
27 body)
28
29 (eval (g const
30 ((do (command) (rest))
31 (command (and cdr rest) command)
32 (stack (s1 ss) ((xs) ss))
33 (s1 (x xs) s1)
34 (x x x)))
35 body)
36
37 (eval (g const
38 ((do (command) (rest))
39 (command (and set rest) command)
40 (stack (s1 s2 ss) (s1 ss))
41 (s1 (xs) (ys))
42 (s2 (ys) s2)))
43 body)

The above rules manipulate the stack, and then move the code pointer do
to the next instruction. More precisely on each instruction:

• null pushes a fresh node with no children to the stack.

• cons pops two items from the stack, then makes a new “pair” node with
children equal to the first node and the second node’s children.

• car pops a node from the stack and pushes its first child back on the stack.

43

• cdr pops a node from the stack and pushes a new node with children equal
to that of the popped node, except for the first one, back on the stack.

• set pops two nodes from the stack, sets the first one’s children as the
second one’s, and then pushes the fist node back on the stack.

Every instruction so far, except for the set, is similar to those of LISP[54],
but they are not excatly the same. For instance, car does return the first
element of cons, but cdr does not return the second one – it returns a new
node that has all of the children of the second node. This matters if we have
“strong equality” (the eq?) in the language.

The set instruction has no equivalent in many LISP variants – it is neither
setcar, nor set-cdr!, because it modifies the pair as if it was a vector.

On the implementation side, there are already two notable properties. First,
every rule ignores the main input node that they all bind to g. This is because
we only need to rewrite the pointer position and the stack which are constant
nodes. Second, there are many blocks of the type (x x x) . The only purpose
of those is to assert that x matches a single node, not zero or more.

Continuing with the rules:
44 (eval (g const
45 ((do (command) (rest))
46 (command (and push-expr rest) command)
47 (push-expr (push v) push-expr)
48 (v (x) v)
49 (stack (ss) (x ss))
50 (x x x)))
51 body)
52
53 (eval (g const
54 ((do (command) (rest))
55 (command (and pop-expr rest) command)
56 (pop-expr (pop v) pop-expr)
57 (v (cs) (s1))
58 (stack (s1 ss) (ss))
59 (s1 s1 s1)))
60 body)

These are rules for push and pop instructions. The push works as it clas-
sically does – simply pushes a constant to the stack. But the pop specifically
receives an output variable, children of which it sets to the children of the node
on the top of the stack.

Together, these instructions can express all of the instructions that a typical
stack machine needs:

• drop is (pop a) ,

• dup is (and (pop a (and (push a) (push a)))) ,

44

• swap is (and (pop a (and (pop b) (and (push a) (push b))))) ,

and so on... Assuming that a and b above are fresh nodes not used for anything
else.

Finally, we have conditional execution rules:

61 (eval (g const
62 ((do (command) (then))
63 (command (if null? then else) command)
64 (stack (s1 ss) (ss))
65 (then then then)
66 (else else else)
67 (s1 s1 s1)))
68 (eval (g const
69 ((do (command) (else))
70 (command (if null? then else)

command)
71 (stack (s1 ss) (ss))
72 (s1 (x xs) s1)
73 (then then then)
74 (else else else)
75 (x x x)))
76 body))
77
78 (eval (g const
79 ((do (command) (else))
80 (command (if eq? then else) command)
81 (stack (s1 s2 ss) (ss))
82 (then then then)
83 (else else else)
84 (s1 s1 s1)
85 (s2 s2 s2)))
86 (eval (g const
87 ((do (command) (then))
88 (command (if eq? then else) command)
89 (stack (s1 s1 ss) (ss))
90 (s1 s1 s1)
91 (then then then)
92 (else else else)))
93 body))

On the high level, the first two rules interpret the if null? instruction by
poping the top of the stack, then checking if it is a node with no children, and
then moving the code pointer to the appropriate branch. Similarly, if eq? is
interpreted by popping two items from the stack, and checking if they are the
same node.

Since there is no direct negation in ρs, in each pair of rules, one is placed

45

“on top of” the other to prevent the top one from running unless the bottom
one fails, emulating the proper negation.

There is no restriction on what the branches of if are, as long as they point
to gstack code. So, in particular, we can emulate loops (and more generally
GOTOs[55]) by pointing branches to previous instructions.

Note that evaluation is deterministic, even though ρs is not. This is because
at each step there is at most one rewrite that the interpreter can perform.

Example 25.
Let us write a gstack program that reverses a list. For this we choose the

input node to be x, the output node to be r, and the program under the start
variable to be:

1 (l e t ((loop
2 (progn
3 (pop int)
4 (push int)
5 (if null?
6 (return r)
7 (progn
8 (push r)
9 (push int)

10 car
11 cons
12 (pop r)
13 (push int)
14 cdr
15 loop)))))
16 (progn
17 null
18 (pop r)
19 (push x)
20 loop))

This program uses progn as syntactic sugar for and. Basically, expression of
the form

(progn x1 x2 ... xn−1 xn)

translates to

(and x1 (and x2 (and ... (and xn−1 xn) ...))) .

This program is located in example/gstack.scm in the implementation
repository and can be run from there by the ρs interpreter. If the children
of the node x are 〈x1, x2, ..., xn〉, then, when the program finishes, the children
of r become 〈xn, ..., x2, x1〉.

46

Step 3. In this step we design a LISP-like language for implementation of
graph encoding and decoding algorithms. We call this language glisp. The
syntax of glisp is:

Expression e ::= v
| (null) | (cons e e) | (car e) | (cdr e) | (set v e)
| (if (null? e) e e) | (if (eq? e e) e e) | (progn e ... e)
| (define v e)
| (lambda (v ... v) e ... e)

Variable v ::= v1 | v2 | v3 | ... ∀
vi∈U

Essentially, glisp extends gstack by lambda and define in the most straight-
forward way.

The precise semantics of define and lambda are exactly the same as in
Scheme [56]. In fact, the language itself can be expressed in terms of Scheme
macros, as we have done in our implementation repository in test/glisp/builtins.scm.

What is important is that there are only graphs in glisp. All the builtins
that agree in name with gstack (such as null, cons, cdr, ...), have identical
semantics to that of gstack, except that they do not operate on the stack, but
on input arguments and return values (the way functions created by lambda
form do).

The details are not important – glisp is, basically, a simplified Scheme.

Step 4. At this point we ought to describe the algorithms for encoding and
decoding of graphs. First thing to note is that we are going to encode graphs
as graphs. But the resulting graphs are going to be inputs to Turing Machines,
so their structure is very restricted – they represent strings over a finite (size 3)
alphabet. The resulting graphs are always of the following form:

(x1 x2 ... xn−1 xn)

where x1, ..., xn are elements of {o,+, /} ⊂ U.
The idea of the encoding algorithm is to:

1. number vertices,

2. construct an adjacency-list representation of the graph,

3. convert adjacency-list to be number-based.

Each vertex is going to get an assigned “number” first. These numbers are,
of course, also graphs:

• (o) is 0,

• (+ o) is 1,

• (+ + o) is 2,

47

• (+ + + o) is 3,
...

An adjacency-list is then constructed. Here are few examples:

• graph (x y z) has adjacency-list representation:

(l e t ((r (x y z)))
((r x y z)

(x)
(y)
(z)))

• graph ((2 · x) + x) has adjacency-list representation:

(l e t ((z (2 · x))
(m (z + x)))

((m z + x)
(z 2 · x)
(2)
(·)
(x)
(+)))

Finally, encoded graphs have indexes instead of the actual subgraphs in
them, and have individual lists separated by /. For the graph (x y z) , the
final number-based adjacency-list is the following graph:

(+ + o + + + o + + + + o + + + + + o /
+ + + o /
+ + + + o /
+ + + + + o /)

Encoding. To get indexes of vertices, we order them. The following func-
tion takes a graph and outputs all of its vertices in order:

1 (define order-nodes
2 (lambda (graph)
3 (define visited-list (nul l))
4
5 (define add-to-visited
6 (lambda (node)
7 (set visited-list (cons node visited-list))))
8
9 (define loop

10 (lambda (g)
11 (define consed (cons g g))

48

12 (i f (null? (in-children? visited-list g))
13 (nul l)
14 (i f (eq? eval-node g)
15 (progn
16 (foreach-child loop g))
17 (progn
18 (add-to-visited g)
19 (foreach-child loop g))))))
20
21 (loop graph)
22
23 (cons
24 eval-node
25 (reverse-children visited-list))))

It always puts eval first, no matter if it was present in the graph. This
way, it will always be encoded as 1 (indexes are 1-based), retaining its speciality
compared to other nodes that get indexes related to their position in the graph.

We use helper functions, like in-children? and foreach-child in the im-
plementation. They are trivial, so we move their definitions to Appendix A.

Having this function, we create an ordered list of vertices, and then once
we need to get an index of a vertex, we look for its position on the list. This
finishes the first step of the encoding.

Next, the creation of adjacency list:

1 (define graph->adjlist
2 (lambda (g)
3 (define return (nul l))
4 (define visited-list (nul l))
5
6 (define add-to-return
7 (lambda (node)
8 (set return (cons node return))))
9 (define add-to-visited

10 (lambda (node)
11 (set visited-list (cons node visited-list))))
12
13 (define loop
14 (lambda (g)
15 (define consed (cons g g))
16 (i f (null? (in-children? visited-list g))
17 (nul l)
18 (progn
19 (add-to-return consed)
20 (add-to-visited g)
21 (foreach-child loop g)))))
22

49

23 (loop g)
24
25 (reverse-children return)))

The resulting adjacency-list is basically the same as in the previous examples.
We then need to separate the lists by the specially chosen vertex, separator =
/, and then flatten the list so that it is closer to our target string. For that, we
have the functions intersperse and flatten.

In the last step, we replace vertices of adjacency-list by their indexes:

1 (define flat-adjlist->tape
2 (lambda (ordered-nodes x)
3 (i f (null? x) x
4 (progn
5 (define first (car x))
6 (define encoded-first
7 (i f (eq? first separator)
8 (make-singleton separator)
9 (index-of ordered-nodes first)))

10 (concat
11 encoded-first
12 (flat-adjlist->tape ordered-nodes (cdr x))))

)))

By putting it all together we get the encoding function:

1 (define encode-graph
2 (lambda (g)
3 (define ordered-nodes (order-nodes g))
4 (define adjlist (graph->adjlist g))
5 (define separated
6 (intersperse (make-singleton separator) adjlist)

)
7 (define flat (flatten separated))
8 (flat-adjlist->tape ordered-nodes flat)))

Decoding.
Large part of the decoding process is parsing:

1 (define read-number
2 (lambda (tape)
3 (define head (car tape))
4 (set tape (cdr tape))
5
6 (i f (null? (n-zero? (make-singleton head)))
7 (n-zero)
8 (n-successor
9 (read-number tape)))))

10

50

11 (define separator-next?
12 (lambda (tape)
13 (define head (car tape))
14 (i f (eq? head separator)
15 true-node
16 false-node)))
17
18 (define skip-separator
19 (lambda (tape)
20 (set tape (cdr tape))))

Apart from the input tape, the decoder function may receive an ordered list
of vertices. This list would be the translation of numbers from the tape, to the
actual vertices on the list. Recall that the orignal transformation passes encoded
tape to a Turing Machine, then receives the result and decodes it to a graph. If
on the resulting tape we see an index that was previously used for a vertex a,
then that index must still represent a. But there may be more different vertices
in the output than there were in the input. For that reason we may need to
extend our ordered list with new, fresh nodes:

1 (define make-additional
2 (lambda (ordered-nodes g)
3 (define old-node-count (children-count

ordered-nodes))
4 (define new-node-count (count-separators g))
5 (define fresh-count
6 (n-successor (monus new-node-count

old-node-count)))
7
8 (make-n-fresh-nodes fresh-count)))
9

10 (define count-separators
11 (lambda (g)
12 (i f (null? g) (n-zero)
13 (i f (eq? (car g) separator)
14 (n-successor (count-separators (cdr g)))
15 (count-separators (cdr g))))))

The decoding process itself comes down to recursively collecting lists of chil-
dren and modifying existing ones:

1 (define decode-graph
2 (lambda (ordered-nodes g)
3 (define all-nodes
4 (concat ordered-nodes
5 (make-additional ordered-nodes g)))
6
7 (define read-node

51

8 (lambda ()
9 (define n (read-number g))

10 (define v (child-ref all-nodes n))
11 v))
12
13 (define read-list
14 (lambda ()
15 (loop (read-node) (nul l))))
16
17 (define loop
18 (lambda (current current-children)
19 (i f (null? (separator-next? g))
20 (progn
21 (skip-separator g)
22 (set current (reverse-children

current-children))
23 (i f (null? g) g (read-list)))
24 (progn
25 (define v (read-node))
26 (loop current (cons v current-children)))

)
27 current))
28
29 (read-list)))

Step 5. On one hand we have a stack machine that works on graphs, and
on the other, a LISP-like functional language that also works on graphs. In
practice, a translation would be a trivial matter. However, it would be neither
succinct, nor easily provable correct. For this reason, we do not attempt to
give the full description of such a translation, and instead suggest to look into
existing work on this topic.

For example, the work on a portable LISP compiler [57] describes in detail
compilation of LISP-like languages into a generic register machine. Veriables of
gstack can be used as register names, and the command (and null (pop v))
can be seen as an allocation of fresh memory space into variable v, thus providing
functionalities that register machines require.

A more generic approach is adopted in [58]. Here the focus is placed on the
problem of compilation of lambda into primitive machine-level instructions.

Note that, in any case, the translation does not have to be implmenented in
ρs. The glisp language is introduced purely for conveinence, while the original
transformation needs to be implemented in gstack because that is the language
that we interpret in ρs.

Step 6. Implementing a Turing Machine in terms of a rewrite system is the
easiest step. We start by defining the list of constants that contain, among other

52

things, the alphabet and the states of the turing machine, by defining a variable
state that keeps the current state, another variable action that controls the
execution, and variables tape-left and head that represent parts of the tape.

1 (l e t ((const (>> << HALT NEWSTATE MOVE _ 0 1 2 3 4 5 6
7 8 9 q0 q1 q2 q3 q4 q5 q6 q7 q8 q9))

2 (state (q0))
3 (action (MOVE >>))
4 (tape-left (_ _ _ _))
5 (head (_)))

There are three possible actions:
1. move the head to the right, encoded as (MOVE >>) ,

2. move the head to the left, encoded as (MOVE <<) ,

3. calculate a new state, encoded as (NEWSTATE) .
With that, there are only two rules needed to run the turing machine:

6 (eval (g const
7 ((action (MOVE >>) (NEWSTATE))
8 (tape-left (xs x) (xs x h))
9 (head (h) (y))

10 (tape-right (y ys) (ys _))
11 (x x x)
12 (y y y)))
13 body)
14
15 (eval (g const
16 ((action (MOVE <<) (NEWSTATE))
17 (tape-left (xs x) (_ xs))
18 (head (h) (x))
19 (tape-right (y ys) (h y ys))
20 (x x x)
21 (y y y)))
22 body)

Each rule deals with the shift to the right or to the left. The tape is repre-
sented by tape-left, head and tape-right, such that if children of these three
variables are concatenated, then they represent the actual tape. The node _
represents a blank symbol on the tape. Initially, tape-left and head contain
only a single blank symbol. In the process of running the machine, new blank
symbols are added, emulating the infinite aspect of the tape. On the other hand,
tape-right is initialized with the input string.

The presented part is generic to every Turing Machine, but the transition
function must be implemented separately. Here is an example of a transi-
tion relation that negates its input, i.e. transforms (0 0 0 1 1 1 1) into
(1 1 1 0 0 0 0) :

53

23 (eval (g const
24 ((action (NEWSTATE) (MOVE >>))
25 (head (0) (1))
26 (state (q0) (q0))))
27 body)
28
29 (eval (g const
30 ((action (NEWSTATE) (MOVE >>))
31 (head (1) (0))
32 (state (q0) (q1))))
33 body)
34
35 (eval (g const
36 ((action (NEWSTATE) (MOVE >>))
37 (head (1) (0))
38 (state (q1) (q1))))
39 body)
40
41 (eval (g const
42 ((action (NEWSTATE) (HALT))
43 (head (_) (_))
44 (state (q1) (HALT))))
45 body))

This example is placed in example/turing-machine.scm and can be run
from there by the ρs interpreter.

What is important is that because ρs is nondeterministic, the transition
function can be a relation, in which case the program would emulate a nonde-
terministic Turing Machine.

Step 7. So far, our construction works under the assumption that no eval
in the original program has access to our input argument. This is because
our decoding algorithm constructs the graph step-by-step, thus a parallel eval
could in that time observe graphs that are neither the original input, nor the
final result, but something inbetween.

The solution to this issue is to adopt our algorithm from Lemma 4 that allows
to compare and rewrite whole graphs in one step. Given a slight modification of
that algorithm, we can get a builtin function construct-cmp-and-swap which
returns a function that performs the actual compare-and-swap atomically, and
singnals the success status. Then, once an input argument has been given, we
make a copy that is isomorphic to it and record the isomorphism. We then
encode that copy, transform it on the Turing Machine, and decode back to get
the result that is isomorphic to the intended result. Finally, we pass the input
argument (that could be modified by now), the result of the transformation,
and the recorded isomorphism to construct-cmp-and-swap function, which in
turn dynamically constructs the neccessary rules without the resulting graph

54

(to which the input is swaped), but using the isomorphism that we have given
to it. If compare operation detects changes in the input graph, we start from
the begining – by making the copy of the new input, and continuing from there.

We know that such a construct-cmp-and-swap function that constructs the
necessary rules based on isomorphism can exist in glisp because, as we have
already seen, any computable function is constructible in glisp.

Conclusions and future work
Given that any computable library feature is expressible, we can safely imple-
ment any local features in the host interpreter of ρs, achieving much better
performance. The space of these features allows for implementation of arbitrary
evaluation orders, including nondeterministic ones, and for many practical pro-
gramming features, such as macros.

It is, however, not clear what happens when we go beyond library features.
One area is atomicity, where we have shown that some atomic library features
are expressible. It is our conjecture that every atomic library feature is a regular
library feature. But even a positive answer would not imply that ρs has no
use for modeling concurrency, since nondeterministic communication between
parallel redexes is still possible.

Going even further, stateful features must be studied. One easy way to
bound the expressiveness of ρs is by a stateful function that, apart from the
focused subgraph, modifies its own local state. We expect there to be a gradation
between library features and fully stateful features.

Finally, our definition of expressiveness allows one to study composition of
features, and based on that, to develop a bigger theory of features themselves.

On the implementation side, given the very dynamic nature of ρs, ideas for
efficient, just-in-time, compilation of redexes is worth studying, for it may be
transferrable to other languages.

Appendix
Appendix A Definitions of helper procedures for glisp code:

1 ;; The values of unbound variables are themselves,
2 ;; so the below lines is just aliasing :
3 (define eval-node eval)
4 (define separator /)
5 (define bit0 o)
6 (define bit1 +)
7
8 (define true-node (null))
9 (define false-node (cons true-node true-node))

10

55

11 (define make-singleton
12 (lambda (x)
13 (cons x (null))))
14
15 (define concat
16 (lambda (left right)
17 (if (null? left) right
18 (cons (car left)
19 (concat (cdr left) right)))))
20
21 (define copy-children
22 (lambda (x)
23 (cons (car x) (cdr x))))
24
25 (define flatten
26 (lambda (x)
27 (if (null? x) x
28 (concat
29 (car x)
30 (flatten (cdr x))))))
31
32 (define intersperse
33 (lambda (separator list)
34 (if (null? list) list
35 (cons
36 (car list)
37 (cons
38 separator
39 (intersperse
40 separator (cdr list)))))))
41
42 (define foreach-child
43 (lambda (func list)
44 (if (null? list) list
45 (progn
46 (func (car list))
47 (foreach-child func (cdr list))))))
48
49 ;; Shallow comparison, only 1 level deep.
50 (define equal-children?
51 (lambda (a b)
52 (if (null? a)
53 (if (null? b)
54 true-node
55 false-node)
56 (if (null? b)

56

57 false-node
58 (if (eq? (car a) (car b))
59 (equal-children?
60 (cdr a) (cdr b))
61 false-node)))))
62
63 (define n-zero
64 (lambda ()
65 (make-singleton bit0)))
66
67 (define n-successor
68 (lambda (n)
69 (cons bit1 n)))
70
71 (define n-pred
72 (lambda (n)
73 (cdr n)))
74
75 (define n-zero?
76 (lambda (n)
77 (equal-children? n (n-zero))))
78
79 (define n-one
80 (lambda ()
81 (n-successor (n-zero))))
82
83 (define n-one?
84 (lambda (n)
85 (equal-children? n (n-one))))
86
87 ;; Subtraction bounded by zero.
88 ;; So that monus (5, 3) is 2, but monus (5, 10) is 0.
89 (define monus
90 (lambda (a b)
91 (if (null? (n-zero? b)) a
92 (if (null? (n-zero? a))
93 (n-zero)
94 (monus (n-pred a) (n-pred b))))))
95
96 ;; Starts from 1.
97 ;; If element is not found, returns the length of the

list + 1.
98 (define index-of
99 (lambda (list element)

100 (if (null? list)
101 (n-one)

57

102 (if (eq? element (car list))
103 (n-one)
104 (n-successor
105 (index-of (cdr list)
106 element))))))
107
108 (define child-ref
109 (lambda (list index)
110 (if (null? list) list
111 (if (null? (n-one? index))
112 (car list)
113 (child-ref (cdr list)
114 (n-pred index))))))
115
116 (define make-n-fresh-nodes
117 (lambda (n)
118 (if (null? (n-zero? n))
119 (null)
120 (cons (null)
121 (make-n-fresh-nodes
122 (n-pred n))))))
123
124 (define in-children?
125 (lambda (list item-node)
126 (if (null? list)
127 false-node
128 (progn
129 (define first (car list))
130 (if (eq? first item-node)
131 true-node
132 (in-children?
133 (cdr list) item-node))))))
134
135 (define reverse-children
136 (lambda (x)
137 (define loop
138 (lambda (x buf)
139 (if (null? x) buf
140 (loop (cdr x)
141 (cons (car x) buf)))))
142 (loop x (null))))
143
144 (define children-count
145 (lambda (x)
146 (if (null? x) (n-zero)
147 (n-successor (children-count (cdr x))))))

58

Appendix B My public PGP key:

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBGKsRb8BEADUcpaqwbYO6MdTBkSPl46LiO+KVp3a75YEKBOAXX28MIdzZdLy
J1iVlgfMRkdsmG1etDYc++UaiyN27PyMCHe07JSx2hjhEmXkQLkNxXDyAtppMbhq
uV/PiocSa8Op+eT0Hv5D46fJLacZQ2PhIuMf0kfO0LSIwJC2gWFiJMxP7IXxhvmp
c7lCF5azKEwTocbAtEetXmumY5oeORfqP+jzS7UQfyEmzey9ks/8wCd8xxFAKF8c
0gDkSSmoNJS95q+7bCK4xJZyV82qlKC0rQ7btK3BIClzp9QZpifxCZXK1Xt8Xw9b
F6KPYo/tgyD/2N9sVaRzsJi3FN2sssp/X7s/gQWeiL+KfboQfHR2IruZl4hHmgUC
oqfJgVheCQurABTBRA0ggB7zs9mafwpVgHU3pRBNbBNrhFLDAanSvJ2jdVErhcvz
nCih5rpRDqZqGysVZOgJfhYJUxxh5/WGKAHmkmWB3pZQ968C1CAFggQr6nXlilhe
uU1IIH3KUGHl0IYhbpH5OmQ1CCWL3j0AYUHswgUq8dfLuVUq4Ti82uaC3X6kNSb1
bjW0bkiHngDoZTvMV4stONPGwgo7oKZ6La5N/Ao97MEdW9OZk7BCSLBiZKJ11RVd
1qpL3GjTM+qndZfcZFWNa7Xc3T9cIhXCaUfor4h75+w5PuKyPjqKvZUK2QARAQAB
tB5PdHRvIEp1bmcgPGhlbGxvQHZhdXBsYWNlLmNvbT6JAk4EEwEIADgWIQQfaVxp
nGiubO7SfRalxg0X0snEdgUCYqxFvwIbAwULCQgHAgYVCgkICwIEFgIDAQIeAQIX
gAAKCRClxg0X0snEdkOeEACQutyI9ftOpHD6Gp8o61qKNGC2xV2GcKtG2i0re3WH
KdVoBMuKN096JrU4TQA672Azupb2VrCj7W5wmUnfoTiqqHTlEKTxQbO9dvAnBb5L
yGs3zwarm8ZdCyS2RRHpxFcY0JQabVsxhHi/ZLvdiL4o5GlTU/jfapp6z4PKVefn
NNCx9LCs6VGKjUYpP2aJawrJfcZhwoD7Oj4zmNmviQww2rgDVyBkfxYklhUjKME0
EnlD14lSUZbA4YhjGbpEgbutTYjs+VVmn9t8OgemT0ufi3rCmxFUpSXKpMLSTNdx
UPLhnp7xL4IsoQWOwxj9rnNCtdaBkiumw6HBGH2i9EKgTa2ltaNGuJYVrLiHCigK
15TKIdwTLvmvKBjQOv4UuvJVGlhtxG+CPxrol8hmhnBNSfDPcKcOGfxyi3OZoN2g
RplJJ28I7Ua1V3zaC//Tdwi80bXRP6CjSlXicg2uPxv8u3cPdzJIP72kp+B3jFkG
weZ+74Z+Sk/6QpjWfT1PTJGLcKiupBLSdFmyDh/Y5easPKy41ZaX9JsKBRiAIRnG
6szU72sVTvm2/kCEKqwSkk1Tls1cwnjDJHbArrDiK7I2ugfvJr9ZTkF0EGD0cwgn
CoKQNpfwVCZiQT0S+krWwlxabP/hcaH6n4BHGvFPM9dxwQJDUoPz93vGN3HSwXoQ
H7kCDQRirEW/ARAAu42hCjzUgjCClZpJy/3JUxgKJZl7+cb4nKLzvrGQg/tRln1/
HRPif+Sic8vBHwmpPm+X2Lk5kp+sYh6U2QBhQPajgs8DttHeg0t+ZqF7Q9dL05xs
QmEzNuaxmuQIYHq1EmVtKkrWjRtETRQv9EDFIAldce4FLnngc+GcW9nZYGZfMZnE
KsAZbkrjdfki0N4lhEh7yNcsM24OAYYZkP/a+vreZRUsN+Z0mZgdctW0uVemkCwn
1IjcjgdrirpT9PXcpeRurDxvALTIlXDMZqdr4yZ+SQJrYkAm1s/o1FOFVp5j0V4L
2gv88RXYU7FWHMhQMdlHvUmc7rCB7xHAkUx5H/tG9nVWwLF+YyrNTfMgkzxX265L
FKFyVTsWn2x6sLA22yCQNb3+pf7oNnhft4EzMzS9pRq3gxABpx1YYLX0FnXXrlvm
lDJECTf47UVpyVSmtP9PRNGIRPZACd1kvj+TkRlJtNvPU0RSkrtskdOeZQ5BCl4W
+QmJo3Q+ndhKojWnKe6SaFQN/eVqrRIj5hwWikxXPhB4f7KpbkRSE42Ye1Mb6mi4
9nzJl3xEFn4FtvtEbl/3pNn37uuKCc9Mpm1ueLE3Yat6bmsRSdAiPZcCdYPlLKC9
QuJ/a7s6SiNSb7UL8WzYMkYpU9lECDePoT7N2SvZubaNt9xe0u/cidwaN8UAEQEA
AYkCNgQYAQgAIBYhBB9pXGmcaK5s7tJ9FqXGDRfSycR2BQJirEW/AhsMAAoJEKXG
DRfSycR2ozwQAJZ8CY/hFjIGKNzYMiXyIN7v/5GxviFeGsq0TjIgVxpNaG4qr4dJ
ohxN/3k3K8DyIL2Q0Oqnx2M+lwzDhtY8UfgX27/1tJEthrbpD0ciA12Nfl2GxLIQ
Rrj0PICHdvhlcxHf/jea3zSNdtffA7dkD/KcKUm1to29xHrfB98mKprXn1dHg6Aa
bTe8J2tZwtaNl+sUrJN6eHj07t2Rq+Lms0a76DAzF5ZjyWkJryas0PJBurc6pE8M
X5vL0QIkMqPGt1PIWP5+++qBKgd2y3MHwRrHOFpu+5pjD9LJNDRVdk/WwLAzJa7a
zampSkW+nwXlpM9h1q1XrE9GY9l1YGR7F2TsnVZUGKQnwG/3KrjVT8sL5NfN+hLT
eGqY/LKC9B9KHQvLcTezlO1Dt+kka4Du/Aka/9CWUbRv0mIivePQHYUUDquvH15V
idEVNOV/Dwo7meHKSu6OsrL6SSop5QjiZAHrW2QGDp6jTY/vmXKeIJLlvvaFylKW
bbIzMZkOXqg9rIf/l8XRPQuHahhGkE3o0YdR4j2anIgm3QHqUnkBlkKGnBFpVmjs
gF3voRFf/47NyxIZeqw5VjREhoDxbvuKVE2UX0lufaFRD8KcNRU+R+h4POGsSej4
Oh5kF8QX9W0EZ2cfs/htfYfoRtJFnpxhlZrwEh6lDXVxYNMmSP5myleT
=mLdw
-----END PGP PUBLIC KEY BLOCK-----

59

References
[1] Saul Gorn. Handling the Growth by Definition of Mechanical Languages.

Proceedings of the April 18-20 Spring Joint Computer Conference. ACM,
1967, pp. 213–224. doi: 10.1145/1465482.1465513.

[2] Nachum Dershowitz. “A Taste of Rewrite Systems”. In: Handbook of The-
oretical Computer Science. Elsevier, 1993, pp. 243–320.

[3] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998. doi: 10.1017/CBO9781139172752.001.

[4] Maarten Mol and Arend Rensink. “On A Graph Formalism for Ordered
Edges”. In: ECEASST 29 (Jan. 2010). doi: 10.14279/tuj.eceasst.29.
417.

[5] H. Ehrig et al. Term graph rewriting. Vol. 2. World Scientific, 1999. Chap. 1.
doi: 10.1142/9789812815149_0001.

[6] C.P. Wadsworth. Semantics and Pragmatics of the Lambda-calculus. Uni-
versity of Oxford, 1971. url: https://books.google.pl/books?id=
kl1QIQAACAAJ.

[7] Hartmut Ehrig. “Introduction to the algebraic theory of graph grammars
(a survey)”. In: Graph-Grammars and Their Application to Computer Sci-
ence and Biology. Ed. by Volker Claus, Hartmut Ehrig, and Grzegorz
Rozenberg. Berlin, Heidelberg: Springer Berlin Heidelberg, 1979, pp. 1–
69. isbn: 978-3-540-35091-0.

[8] D. A. Turner. “A new implementation technique for applicative languages”.
In: Software: Practice and Experience 9.1 (1979), pp. 31–49. doi: 10.1002/
spe.4380090105. url: https://onlinelibrary.wiley.com/doi/abs/
10.1002/spe.4380090105.

[9] Yves Lafont. “Interaction Nets”. In: Proceedings of the 17th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’90.
San Francisco, California, USA: Association for Computing Machinery,
1989, pp. 95–108. isbn: 0897913434. doi: 10.1145/96709.96718.

[10] M.R. Sleep, M.J. Plasmeijer, and M.C.J.D. van Eekelen. Term Graph
Rewriting: Theory and Practice. Wiley, 1993. isbn: 9780471935674. url:
https://books.google.pl/books?id=A9hQAAAAMAAJ.

[11] Christoph Hoffmann and Michael O’Donnell. “Programming with Equa-
tions”. In: ACM Trans. Program. Lang. Syst. 4 (Jan. 1982), pp. 83–112.
doi: 10.1145/357153.357158.

[12] O’Donnell and Michael J. Computing in systems described by equations.
Springer, 1977.

[13] Nachum Dershowitz. “Computing with rewrite systems”. In: Information
and Control 65.2-3 (1985), pp. 122–157.

[14] Michael J O’Donnell. “Equational logic as a programming language”. In:
Workshop on Logic of Programs. Springer. 1985, pp. 255–255.

60

https://doi.org/10.1145/1465482.1465513
https://doi.org/10.1017/CBO9781139172752.001
https://doi.org/10.14279/tuj.eceasst.29.417
https://doi.org/10.14279/tuj.eceasst.29.417
https://doi.org/10.1142/9789812815149_0001
https://books.google.pl/books?id=kl1QIQAACAAJ
https://books.google.pl/books?id=kl1QIQAACAAJ
https://doi.org/10.1002/spe.4380090105
https://doi.org/10.1002/spe.4380090105
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380090105
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380090105
https://doi.org/10.1145/96709.96718
https://books.google.pl/books?id=A9hQAAAAMAAJ
https://doi.org/10.1145/357153.357158

[15] Gregor Kiczales et al. “Aspect-oriented programming”. In: European con-
ference on object-oriented programming. Springer. 1997, pp. 220–242.

[16] Paul Klint, Tijs van der Storm, and Jurgen Vinju. “Term Rewriting Meets
Aspect-Oriented Programming”. In: Processes, Terms and Cycles: Steps
on the Road to Infinity: Essays Dedicated to Jan Willem Klop on the
Occasion of His 60th Birthday. Ed. by Aart Middeldorp et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 88–105. isbn: 978-3-
540-32425-6. doi: 10.1007/11601548_8.

[17] Germain Faure and Claude Kirchner. “Exceptions in the rewriting calcu-
lus”. In: International Conference on Rewriting Techniques and Applica-
tions. Springer. 2002, pp. 66–82.

[18] Flaviu Cristian. “Exception handling and software fault tolerance”. In:
IEEE Transactions on Computers 31.06 (1982), pp. 531–540.

[19] William A Martin and Richard J Fateman. “The MACSYMA system”.
In: Proceedings of the second ACM symposium on Symbolic and algebraic
manipulation. 1971, pp. 59–75.

[20] Wikipedia: Computer algebra system. url: https://en.wikipedia.org/
wiki/Computer_algebra_system.

[21] Wikipedia: Maxima. 1982. url: https : / / en . wikipedia . org / wiki /
Maxima_(software).

[22] Stephen Wolfram. Mathematica: a system for doing mathematics by com-
puter. Addison Wesley Longman Publishing Co., Inc., 1991.

[23] André Heck and Wolfram Koepf. Introduction to MAPLE. Vol. 1993.
Springer, 1993.

[24] Mark van den Brand et al. “Industrial applications of ASF+ SDF”. In:
International Conference on Algebraic Methodology and Software Tech-
nology. Springer. 1996, pp. 9–18.

[25] Martin Bravenboer et al. “Program transformation with scoped dynamic
rewrite rules”. In: Fundamenta Informaticae 69.1-2 (2006), pp. 123–178.

[26] Gilles Kahn. “Natural semantics”. In: Annual symposium on theoretical
aspects of computer science. Springer. 1987, pp. 22–39.

[27] J Jouannaud. “Solving equations in abstract algebras: A rule-based survey
of unification”. In: Computational Logic. MIT-Press. 1991, pp. 257–321.

[28] EGJMH Nöcker et al. “Concurrent clean”. In: International Conference
on Parallel Architectures and Languages Europe. Springer. 1991, pp. 202–
219.

[29] Wikipedia: Orthogonality. url: https : / / en . wikipedia . org / wiki /
Orthogonality_(term_rewriting).

[30] Wikipedia: Reduction strategy. url: https://en.wikipedia.org/wiki/
Reduction_strategy.

61

https://doi.org/10.1007/11601548_8
https://en.wikipedia.org/wiki/Computer_algebra_system
https://en.wikipedia.org/wiki/Computer_algebra_system
https://en.wikipedia.org/wiki/Maxima_(software)
https://en.wikipedia.org/wiki/Maxima_(software)
https://en.wikipedia.org/wiki/Orthogonality_(term_rewriting)
https://en.wikipedia.org/wiki/Orthogonality_(term_rewriting)
https://en.wikipedia.org/wiki/Reduction_strategy
https://en.wikipedia.org/wiki/Reduction_strategy

[31] Eelco Visser et al. “A core language for rewriting”. In: Electronic Notes in
Theoretical Computer Science 15 (1998), pp. 422–441.

[32] Maribel Fernández, Hélène Kirchner, and Olivier Namet. “A Strategy
Language for Graph Rewriting”. In: Logic-Based Program Synthesis and
Transformation. Ed. by Germán Vidal. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 173–188. isbn: 978-3-642-32211-2.

[33] Maribel Fernández and Olivier Namet. “Strategic programming on graph
rewriting systems”. In: arXiv preprint arXiv:1012.5560 (2010).

[34] Peter Borovansk et al. “An overview of ELAN”. In: Electronic Notes in
Theoretical Computer Science 15 (1998), pp. 55–70.

[35] Narciso Martí-Oliet, José Meseguer, and Alberto Verdejo. “Towards a
strategy language for Maude”. In: Electronic Notes in Theoretical Com-
puter Science 117 (2005), pp. 417–441.

[36] Emilie Balland et al. “Tom: Piggybacking rewriting on java”. In: Inter-
national Conference on Rewriting Techniques and Applications. Springer.
2007, pp. 36–47.

[37] Claudia Ermel, Michael Rudolf, and Gabriele Taentzer. “The AGG ap-
proach: Language and environment”. In: Handbook Of Graph Grammars
And Computing By Graph Transformation: Volume 2: Applications, Lan-
guages and Tools. World Scientific, 1999, pp. 551–603.

[38] Andy Schürr, Andreas J Winter, and Albert Zündorf. “The PROGRES
approach: Language and environment”. In: Handbook Of Graph Grammars
And Computing By Graph Transformation: Volume 2: Applications, Lan-
guages and Tools. World Scientific, 1999, pp. 487–550.

[39] Ulrich Nickel, Jörg Niere, and Albert Zündorf. “The FUJABA environ-
ment”. In: Proceedings of the 22nd international conference on Software
engineering. 2000, pp. 742–745.

[40] Rubino Geiß et al. “GrGen: A fast SPO-based graph rewriting tool”.
In: International Conference on Graph Transformation. Springer. 2006,
pp. 383–397.

[41] Detlef Plump. “The graph programming language GP”. In: International
Conference on Algebraic Informatics. Springer. 2009, pp. 99–122.

[42] Tobias Nipkow and Christian Prehofer. “Higher-order rewriting and equa-
tional reasoning”. In: Automated deductiona basis for applications 1 (1998),
pp. 399–430.

[43] Wikipedia: First-class citizen. url: https://en.wikipedia.org/wiki/
First-class_citizen.

[44] Horatiu Cirstea and K Kirchner. “The rewriting calculus-Part II”. In: Logic
Journal of the IGPL 9.3 (2001), pp. 377–410. doi: 10.1093/jigpal/9.
3.339.

62

https://en.wikipedia.org/wiki/First-class_citizen
https://en.wikipedia.org/wiki/First-class_citizen
https://doi.org/10.1093/jigpal/9.3.339
https://doi.org/10.1093/jigpal/9.3.339

[45] Clara Bertolissi. “The Graph Rewriting Calculus: Confluence and Expres-
siveness”. In: Theoretical Computer Science. Ed. by Mario Coppo, Elena
Lodi, and G. Michele Pinna. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2005, pp. 113–127. isbn: 978-3-540-32024-1.

[46] Paul Bernays. “Alonzo Church. An unsolvable problem of elementary num-
ber theory. American journal of mathematics, vol. 58 (1936), pp. 345–363.”
In: The Journal of Symbolic Logic 1.2 (1936), pp. 73–74. doi: 10.2307/
2268571.

[47] Wikipedia: BackusNaur form. url: https://en.wikipedia.org/wiki/
Backus%5C%E2%5C%80%5C%93Naur_form.

[48] Albert Gräf. The Pure Programming Language. 2008. url: https : / /
agraef.github.io/pure-docs/pure.html#recursive-macros.

[49] D Stott Parker, Mantis HM Cheng, and MH van Emdem. “A Prolog Tech-
nology Term Rewriter”. In: Research paper.(Internet) (1994).

[50] Besik Dundua, Temur Kutsia, and Klaus Reisenberger-Hagmayer. “An
Overview of PρLog”. In: International Symposium on Practical Aspects of
Declarative Languages. Springer. 2017, pp. 34–49.

[51] Implementation Repository. url: https://git.vau.place/schrec.git/
about/.

[52] Matthias Felleisen. “On the expressive power of programming languages”.
In: Science of computer programming 17.1-3 (1991), pp. 35–75.

[53] Wikipedia: ChurchTuring thesis. url: https : / / en . wikipedia . org /
wiki/Church%5C%E2%5C%80%5C%93Turing_thesis.

[54] John McCarthy. Recursive Functions of Symbolic Expressions and Their
Computation by Machine. MIT Press, 1960. doi: 10 . 1145 / 367177 .
367199. url: http://hdl.handle.net/1721.1/6096.

[55] Wikipedia: Goto. url: https://en.wikipedia.org/wiki/Goto.
[56] Gerald Jay Sussman and Guy L Steele. “Scheme: A interpreter for ex-

tended lambda calculus”. In: Higher-Order and Symbolic Computation
11.4 (1998), pp. 405–439.

[57] Martin L Griss and Anthony C Hearn. “A portable LISP compiler”. In:
Software: Practice and Experience 11.6 (1981), pp. 541–605.

[58] P. Fradet and D. Le Métayer. “Compilation of lambda-calculus into func-
tional machine code”. In: TAPSOFT ’89. Ed. by J. Díaz and F. Orejas.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1989, pp. 155–166. isbn:
978-3-540-46118-0. doi: 10.1007/3-540-50940-2_34.

63

https://doi.org/10.2307/2268571
https://doi.org/10.2307/2268571
https://en.wikipedia.org/wiki/Backus%5C%E2%5C%80%5C%93Naur_form
https://en.wikipedia.org/wiki/Backus%5C%E2%5C%80%5C%93Naur_form
https://agraef.github.io/pure-docs/pure.html#recursive-macros
https://agraef.github.io/pure-docs/pure.html#recursive-macros
https://git.vau.place/schrec.git/about/
https://git.vau.place/schrec.git/about/
https://en.wikipedia.org/wiki/Church%5C%E2%5C%80%5C%93Turing_thesis
https://en.wikipedia.org/wiki/Church%5C%E2%5C%80%5C%93Turing_thesis
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/367177.367199
http://hdl.handle.net/1721.1/6096
https://en.wikipedia.org/wiki/Goto
https://doi.org/10.1007/3-540-50940-2_34

	Motivation
	Context
	Term rewriting
	Term graph rewriting
	Programming by rewriting

	Preliminaries
	Notation and definitions
	Syntax for graphs

	 calculus
	Static language
	Dynamic language
	Properties

	Graph calculi
	Modularity
	Equality
	Expressiveness

	Expressiveness of
	Library features
	Computable library features

	Conclusions and future work
	Appendix

